BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31549516)

  • 1. Potential of water fern (
    Kumar V; Kumar P; Singh J; Kumar P
    Int J Phytoremediation; 2020; 22(4):392-403. PubMed ID: 31549516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.
    Rai PK
    Int J Phytoremediation; 2008; 10(5):430-9. PubMed ID: 19260224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcosm investigation on phytoremediation of Cr using Azolla pinnata.
    Rai PK
    Int J Phytoremediation; 2010 Jan; 12(1):96-104. PubMed ID: 20734631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of the toxic effluent generated during recovery of precious metals from polymetallic sea nodules.
    Vaseem H; Banerjee TK
    Int J Phytoremediation; 2012; 14(5):457-66. PubMed ID: 22567724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata.
    Akinbile CO; Ogunrinde TA; Che Bt Man H; Aziz HA
    Int J Phytoremediation; 2016; 18(1):54-61. PubMed ID: 26121232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India.
    Rai PK; Tripathi BD
    Environ Monit Assess; 2009 Jan; 148(1-4):75-84. PubMed ID: 18210204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes.
    Talebi M; Tabatabaei BES; Akbarzadeh H
    Chemosphere; 2019 Sep; 230():488-497. PubMed ID: 31121512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental investigation on phytoremediation performance of water lettuce (Pistia stratiotes L.) for pollutants removal from paper mill effluent.
    Singh J; Kumar V; Kumar P; Kumar P; Yadav KK; Cabral-Pinto MMS; Kamyab H; Chelliapan S
    Water Environ Res; 2021 Sep; 93(9):1543-1553. PubMed ID: 33565675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.
    Kumari A; Lal B; Rai UN
    Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of the coalmine effluent.
    Bharti S; Kumar Banerjee T
    Ecotoxicol Environ Saf; 2012 Jul; 81():36-42. PubMed ID: 22571948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies.
    Kumar V; Singh J; Kumar P
    Environ Sci Pollut Res Int; 2019 May; 26(14):14400-14413. PubMed ID: 30868462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation potential of a novel fern, Salvinia cucullata, Roxb. Ex Bory, to pulp and paper mill effluent: Physiological and anatomical response.
    Das S; Mazumdar K
    Chemosphere; 2016 Nov; 163():62-72. PubMed ID: 27521640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of phytokinetic removal of pollutants of paper mill effluent using water hyacinth (Eichhornia crassipes [Mart.] Solms).
    Kumar V; Singh J; Chopra AK
    Environ Technol; 2018 Nov; 39(21):2781-2791. PubMed ID: 28793843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India.
    Rai PK
    Environ Monit Assess; 2009 Nov; 158(1-4):433-57. PubMed ID: 18998227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual function of Lemna minor and Azolla pinnata as phytoremediator for Palm Oil Mill Effluent and as feedstock.
    Kadir AA; Abdullah SRS; Othman BA; Hasan HA; Othman AR; Imron MF; Ismail N'; Kurniawan SB
    Chemosphere; 2020 Nov; 259():127468. PubMed ID: 32603966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India.
    Tiwari KK; Dwivedi S; Mishra S; Srivastava S; Tripathi RD; Singh NK; Chakraborty S
    Environ Monit Assess; 2008 Dec; 147(1-3):15-22. PubMed ID: 18193484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana.
    Pandey VC
    Ecotoxicol Environ Saf; 2012 Aug; 82():8-12. PubMed ID: 22677365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation potential of Lemna minor L. for heavy metals.
    Bokhari SH; Ahmad I; Mahmood-Ul-Hassan M; Mohammad A
    Int J Phytoremediation; 2016; 18(1):25-32. PubMed ID: 26114480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.