These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 31549910)
1. Biopesticide and formulation processes based on starch industrial wastewater fortified with soybean medium. Ndao A; Kumar LR; Tyagi RD; Valéro J J Environ Sci Health B; 2020; 55(2):115-126. PubMed ID: 31549910 [TBL] [Abstract][Full Text] [Related]
2. Mathematical relationships between spore concentrations, delta-endotoxin levels, and entomotoxicity of Bacillus thuringiensis preparations produced in different fermentation media. Vu KD; Tyagi RD; Surampalli RY; Valéro JR Bioresour Technol; 2012 Nov; 123():303-11. PubMed ID: 22940334 [TBL] [Abstract][Full Text] [Related]
3. Starch industry wastewater for production of biopesticides--ramifications of solids concentrations. Vu KD; Tyagi RD; Brar SK; Valéro JR; Surampalli RY Environ Technol; 2009 Apr; 30(4):393-405. PubMed ID: 19492550 [TBL] [Abstract][Full Text] [Related]
4. Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate. Vu KD; Yan S; Tyagi RD; Valéro JR; Surampalli RY Bioresour Technol; 2009 Nov; 100(21):5260-9. PubMed ID: 19564105 [TBL] [Abstract][Full Text] [Related]
5. Corrosion and stability study of Bacillus thuringiensis var. kurstaki starch industry wastewater-derived biopesticide formulation. Gnepe JR; Tyagi RD; Brar SK; Valéro JR; Surampalli RY J Environ Sci Health B; 2014; 49(11):889-96. PubMed ID: 25190564 [TBL] [Abstract][Full Text] [Related]
6. Pilot-scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material. Ndao A; Sellamuthu B; Gnepe JR; Tyagi RD; Valero JR J Environ Sci Health B; 2017 Sep; 52(9):623-630. PubMed ID: 28586277 [TBL] [Abstract][Full Text] [Related]
7. Impact of different pH control agents on biopesticidal activity of Bacillus thuringiensis during the fermentation of starch industry wastewater. Vu KD; Tyagi RD; Valéro JR; Surampalli RY Bioprocess Biosyst Eng; 2009 Jun; 32(4):511-9. PubMed ID: 18979122 [TBL] [Abstract][Full Text] [Related]
8. Production of Bacillus thuringiensis based biopesticide formulation using starch industry wastewater (SIW) as substrate: A techno-economic evaluation. Kumar LR; Ndao A; Valéro J; Tyagi RD Bioresour Technol; 2019 Dec; 294():122144. PubMed ID: 31542498 [TBL] [Abstract][Full Text] [Related]
9. Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate. Vu KD; Tyagi RD; Valéro JR; Surampalli RY Bioprocess Biosyst Eng; 2010 Aug; 33(6):691-700. PubMed ID: 19888605 [TBL] [Abstract][Full Text] [Related]
10. [Bioconversion of sewage sludge to biopesticide by Bacillus thuringiensis]. Chang M; Zhou SG; Lu N; Ni JR Huan Jing Ke Xue; 2006 Jul; 27(7):1450-4. PubMed ID: 16881328 [TBL] [Abstract][Full Text] [Related]
12. Potential of sugarcane bagasse (agro-industrial waste) for the production of Bacillus thuringiensis israelensis. Poopathi S; Mani C; Rajeswari G Trop Biomed; 2013 Sep; 30(3):504-15. PubMed ID: 24189680 [TBL] [Abstract][Full Text] [Related]
13. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium. Ben Khedher S; Jaoua S; Zouari N Braz J Microbiol; 2013; 44(3):927-33. PubMed ID: 24516462 [TBL] [Abstract][Full Text] [Related]
14. Influence of media composition on the production of delta-endotoxin by Bacillus thuringiensis var. thuringiensis. Mummigatti SG; Raghunathan AN J Invertebr Pathol; 1990 Mar; 55(2):147-51. PubMed ID: 2156939 [TBL] [Abstract][Full Text] [Related]
15. Screening of different adjuvants for wastewater/wastewater sludge-based Bacillus thuringiensis formulations. Brar SK; Verma M; Tyagi RD; Valéro JR; Surampalli RY J Econ Entomol; 2006 Aug; 99(4):1065-79. PubMed ID: 16937657 [TBL] [Abstract][Full Text] [Related]
16. The effect of aeration conditions, characterized by the volumetric mass transfer coefficient K(L)a, on the fermentation kinetics of Bacillus thuringiensis kurstaki. Mounsef JR; Salameh D; Louka N; Brandam C; Lteif R J Biotechnol; 2015 Sep; 210():100-6. PubMed ID: 26091772 [TBL] [Abstract][Full Text] [Related]
17. Optimization of spray drying process for Bacillus thuringiensis fermented wastewater and wastewater sludge. Adjallé KD; Vu KD; Tyagi RD; Brar SK; Valéro JR; Surampalli RY Bioprocess Biosyst Eng; 2011 Feb; 34(2):237-46. PubMed ID: 20835715 [TBL] [Abstract][Full Text] [Related]
18. Biphasic fermentation is an efficient strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis. Jisha VN; Smitha RB; Priji P; Sajith S; Benjamin S Appl Biochem Biotechnol; 2015 Feb; 175(3):1519-35. PubMed ID: 25410805 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of industrial wastewater and wastewater sludge into Bacillus thuringiensis based biopesticides in pilot fermentor. Yezza A; Tyagi RD; Valéro JR; Surampalli RY Bioresour Technol; 2006 Oct; 97(15):1850-7. PubMed ID: 16242319 [TBL] [Abstract][Full Text] [Related]
20. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis. Ennouri K; Ayed RB; Hassen HB; Mazzarello M; Ottaviani E Acta Microbiol Immunol Hung; 2015 Dec; 62(4):379-92. PubMed ID: 26689874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]