These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31549913)

  • 1. Evaluation of the impact of soil contamination with mercury and application of soil amendments on the yield and chemical composition of
    Sądej W; Żołnowski AC; Ciećko Z; Grzybowski Ł; Szostek R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(1):82-96. PubMed ID: 31549913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Content of macronutrients in oat (Avena sativa L.) after remediation of soil polluted with cobalt.
    Kosiorek M; Wyszkowski M
    Environ Monit Assess; 2019 May; 191(6):389. PubMed ID: 31119483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of cobalt-polluted soil after application of selected substances and using oat (Avena sativa L.).
    Kosiorek M; Wyszkowski M
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16762-16780. PubMed ID: 30997643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops.
    Szostek R; Ciećko Z
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8588-8601. PubMed ID: 28194675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper.
    De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G
    Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical mercury concentration in tropical soils: Impact on plants and soil biological attributes.
    Lima FRD; Martins GC; Silva AO; Vasques ICF; Engelhardt MM; Cândido GS; Pereira P; Reis RHCL; Carvalho GS; Windmöller CC; Moreira FMS; Guilherme LRG; Marques JJ
    Sci Total Environ; 2019 May; 666():472-479. PubMed ID: 30802662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.
    García-Sánchez M; Klouza M; Holečková Z; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14254-68. PubMed ID: 27053055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation effect of compost on soluble mercury transfer in a crop of Phaseolus vulgaris.
    Restrepo-Sánchez NE; Acevedo-Betancourth L; Henao-Murillo B; Peláez-Jaramillo C
    J Environ Sci (China); 2015 May; 31():61-7. PubMed ID: 25968259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Mercury Uptake and Distribution in Rice (Oryza sativa L.).
    Hang X; Gan F; Chen Y; Chen X; Wang H; Du C; Zhou J
    Bull Environ Contam Toxicol; 2018 Mar; 100(3):451-456. PubMed ID: 29230483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress.
    Mohammadi S; Pourakbar L; Siavash Moghaddam S; Popović-Djordjević J
    Ecotoxicol Environ Saf; 2021 Jan; 208():111607. PubMed ID: 33396127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDTA and hydrochloric acid effects on mercury accumulation by Lupinus albus.
    Rodríguez L; Alonso-Azcárate J; Villaseñor J; Rodríguez-Castellanos L
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24739-24748. PubMed ID: 27658402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-soluble mercury induced by organic amendments affected microbial community assemblage in mercury-polluted paddy soil.
    Hu H; Li M; Wang G; Drosos M; Li Z; Hu Z; Xi B
    Chemosphere; 2019 Dec; 236():124405. PubMed ID: 31545202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation.
    Guo F; Ding C; Zhou Z; Huang G; Wang X
    Ecotoxicol Environ Saf; 2018 Feb; 148():303-310. PubMed ID: 29091832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential of two different Avena sativa L. cultivars to alleviate Cu toxicity.
    Marastoni L; Tauber P; Pii Y; Valentinuzzi F; Astolfi S; Simoni A; Brunetto G; Cesco S; Mimmo T
    Ecotoxicol Environ Saf; 2019 Oct; 182():109430. PubMed ID: 31306921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of mercury phytoavailability in Oxisols.
    Lima FRD; Engelhardt MM; Vasques ICF; Martins GC; Cândido GS; Pereira P; Reis RHCL; Silva AO; Guilherme LRG; Marques JJ
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):483-491. PubMed ID: 30406589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.
    Tang Z; Fan F; Wang X; Shi X; Deng S; Wang D
    Ecotoxicol Environ Saf; 2018 Apr; 150():116-122. PubMed ID: 29272715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from Oak Ridge.
    Pant P; Allen M; Tansel B
    Int J Phytoremediation; 2011 Feb; 13(2):168-76. PubMed ID: 21598784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of zeolite to neutralise nickel in a soil environment.
    Boros-Lajszner E; Wyszkowska J; Kucharski J
    Environ Monit Assess; 2017 Dec; 190(1):54. PubMed ID: 29290030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils.
    Hussain Lahori A; Zhang Z; Guo Z; Mahar A; Li R; Kumar Awasthi M; Ali Sial T; Kumbhar F; Wang P; Shen F; Zhao J; Huang H
    Ecotoxicol Environ Saf; 2017 Nov; 145():313-323. PubMed ID: 28756252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses.
    Bibi A; Farooq U; Naz S; Khan A; Khan S; Sarwar R; Mahmood Q; Alam A; Mirza N
    Int J Phytoremediation; 2016; 18(4):354-7. PubMed ID: 26514060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.