BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31550137)

  • 1. Characterization and Engineering of a Clostridium Glycine Riboswitch and Its Use To Control a Novel Metabolic Pathway for 5-Aminolevulinic Acid Production in
    Zhou L; Ren J; Li Z; Nie J; Wang C; Zeng AP
    ACS Synth Biol; 2019 Oct; 8(10):2327-2335. PubMed ID: 31550137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli.
    Hong KQ; Zhang J; Jin B; Chen T; Wang ZW
    Microb Cell Fact; 2022 Apr; 21(1):56. PubMed ID: 35392910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The asymmetry and cooperativity of tandem glycine riboswitch aptamers.
    Torgerson CD; Hiller DA; Strobel SA
    RNA; 2020 May; 26(5):564-580. PubMed ID: 31992591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch.
    Sherman EM; Elsayed G; Esquiaqui JM; Elsayed M; Brinda B; Ye JD
    J Biochem; 2014 Dec; 156(6):323-31. PubMed ID: 25092436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Riboswitches in Vivo Using Dual Genetic Selection and Fluorescence-Activated Cell Sorting.
    Page K; Shaffer J; Lin S; Zhang M; Liu JM
    ACS Synth Biol; 2018 Sep; 7(9):2000-2006. PubMed ID: 30119599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory context drives conservation of glycine riboswitch aptamers.
    Crum M; Ram-Mohan N; Meyer MM
    PLoS Comput Biol; 2019 Dec; 15(12):e1007564. PubMed ID: 31860665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Singlet glycine riboswitches bind ligand as well as tandem riboswitches.
    Ruff KM; Muhammad A; McCown PJ; Breaker RR; Strobel SA
    RNA; 2016 Nov; 22(11):1728-1738. PubMed ID: 27659053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch.
    Erion TV; Strobel SA
    RNA; 2011 Jan; 17(1):74-84. PubMed ID: 21098652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.
    Ruff KM; Strobel SA
    RNA; 2014 Nov; 20(11):1775-88. PubMed ID: 25246650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas.
    Mehrshahi P; Nguyen GTDT; Gorchs Rovira A; Sayer A; Llavero-Pasquina M; Lim Huei Sin M; Medcalf EJ; Mendoza-Ochoa GI; Scaife MA; Smith AG
    ACS Synth Biol; 2020 Jun; 9(6):1406-1417. PubMed ID: 32496044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual genetic selection of synthetic riboswitches in Escherichia coli.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2014; 1111():131-40. PubMed ID: 24549616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Babina AM; Lea NE; Meyer MM
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching.
    Torgerson CD; Hiller DA; Stav S; Strobel SA
    RNA; 2018 Dec; 24(12):1813-1827. PubMed ID: 30237163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning strand displacement kinetics enables programmable ZTP riboswitch dynamic range in vivo.
    Bushhouse DZ; Lucks JB
    Nucleic Acids Res; 2023 Apr; 51(6):2891-2903. PubMed ID: 36864761
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Ogawa A; Itoh Y
    ACS Synth Biol; 2020 Oct; 9(10):2648-2655. PubMed ID: 33017145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Glycine Cleavage and Detoxification by a Highly Conserved Glycine Riboswitch in Burkholderia spp.
    Munyati-Othman N; Appasamy SD; Damiri N; Emrizal R; Alipiah NM; Ramlan EI; Firdaus-Raih M
    Curr Microbiol; 2021 Aug; 78(8):2943-2955. PubMed ID: 34076709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening and selection of artificial riboswitches.
    Harbaugh SV; Martin JA; Weinstein J; Ingram G; Kelley-Loughnane N
    Methods; 2018 Jul; 143():77-89. PubMed ID: 29778645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.