BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31550164)

  • 1. Magnetic Proximity Coupling of Quantum Emitters in WSe
    Shayan K; Liu N; Cupo A; Ma Y; Luo Y; Meunier V; Strauf S
    Nano Lett; 2019 Oct; 19(10):7301-7308. PubMed ID: 31550164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiferromagnetic proximity coupling between semiconductor quantum emitters in WSe
    Liu N; Gallaro CM; Shayan K; Mukherjee A; Kim B; Hone J; Vamivakas N; Strauf S
    Nanoscale; 2021 Jan; 13(2):832-841. PubMed ID: 33351877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Exchange Field Modulation of Quantum Hall Ferromagnetism in 2D van der Waals CrCl
    Wu Y; Cui Q; Zhu M; Liu X; Wang Y; Zhang J; Zheng X; Shen J; Cui P; Yang H; Wang S
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10656-10663. PubMed ID: 33595292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Single Photon Emission Purity via Design of van der Waals Heterostructures.
    Chuang HJ; Stevens CE; Rosenberger MR; Lee SJ; McCreary KM; Hendrickson JR; Jonker BT
    Nano Lett; 2024 May; 24(18):5529-5535. PubMed ID: 38668677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Magnetic Proximity Induced Anomalous Hall Effect in a Room Temperature van der Waals Ferromagnetic Semiconductor Based 2D Heterostructure.
    Wu H; Yang L; Zhang G; Jin W; Xiao B; Zhang W; Chang H
    Small Methods; 2024 Jan; ():e2301524. PubMed ID: 38295050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-Confined Stark Effect of Individual Defects in a van der Waals Heterostructure.
    Chakraborty C; Goodfellow KM; Dhara S; Yoshimura A; Meunier V; Vamivakas AN
    Nano Lett; 2017 Apr; 17(4):2253-2258. PubMed ID: 28267348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures.
    Zhang L; Huang X; Dai H; Wang M; Cheng H; Tong L; Li Z; Han X; Wang X; Ye L; Han J
    Adv Mater; 2020 Sep; 32(38):e2002032. PubMed ID: 32803805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect Excitons and Trions in MoSe
    Calman EV; Fowler-Gerace LH; Choksy DJ; Butov LV; Nikonov DE; Young IA; Hu S; Mishchenko A; Geim AK
    Nano Lett; 2020 Mar; 20(3):1869-1875. PubMed ID: 32069058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Phases of Moiré Excitons in van der Waals Heterostructures.
    Brem S; Linderälv C; Erhart P; Malic E
    Nano Lett; 2020 Dec; 20(12):8534-8540. PubMed ID: 32970445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics.
    Zhong D; Seyler KL; Linpeng X; Cheng R; Sivadas N; Huang B; Schmidgall E; Taniguchi T; Watanabe K; McGuire MA; Yao W; Xiao D; Fu KC; Xu X
    Sci Adv; 2017 May; 3(5):e1603113. PubMed ID: 28580423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gate-Tunable Anomalous Hall Effect in Stacked van der Waals Ferromagnetic Insulator-Topological Insulator Heterostructures.
    Llacsahuanga Allcca AE; Pan XC; Miotkowski I; Tanigaki K; Chen YP
    Nano Lett; 2022 Oct; 22(20):8130-8136. PubMed ID: 36215229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Indirect Interlayer Exciton in a MoSe
    Hanbicki AT; Chuang HJ; Rosenberger MR; Hellberg CS; Sivaram SV; McCreary KM; Mazin II; Jonker BT
    ACS Nano; 2018 May; 12(5):4719-4726. PubMed ID: 29727170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectively Controlled Ferromagnets by Electric Fields in van der Waals Ferromagnetic Heterojunctions.
    Wang ZA; Xue W; Yan F; Zhu W; Liu Y; Zhang X; Wei Z; Chang K; Yuan Z; Wang K
    Nano Lett; 2023 Jan; 23(2):710-717. PubMed ID: 36626837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-resolved magnetic proximity effect in van der Waals heterostructures.
    Zhong D; Seyler KL; Linpeng X; Wilson NP; Taniguchi T; Watanabe K; McGuire MA; Fu KC; Xiao D; Yao W; Xu X
    Nat Nanotechnol; 2020 Mar; 15(3):187-191. PubMed ID: 31988503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe
    Binder J; Withers F; Molas MR; Faugeras C; Nogajewski K; Watanabe K; Taniguchi T; Kozikov A; Geim AK; Novoselov KS; Potemski M
    Nano Lett; 2017 Mar; 17(3):1425-1430. PubMed ID: 28211273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical Tuning of Interlayer Exciton Gases in WSe
    Wang Z; Chiu YH; Honz K; Mak KF; Shan J
    Nano Lett; 2018 Jan; 18(1):137-143. PubMed ID: 29240440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe
    Nayak PK; Horbatenko Y; Ahn S; Kim G; Lee JU; Ma KY; Jang AR; Lim H; Kim D; Ryu S; Cheong H; Park N; Shin HS
    ACS Nano; 2017 Apr; 11(4):4041-4050. PubMed ID: 28363013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of a polariton step potential by local variation of light-matter coupling in a van-der-Waals heterostructure.
    Rupprecht C; Klaas M; Knopf H; Taniguchi T; Watanabe K; Qin Y; Tongay S; Schröder S; Eilenberger F; Höfling S; Schneider C
    Opt Express; 2020 Jun; 28(13):18649-18657. PubMed ID: 32672161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximity effects in graphene and ferromagnetic CrBr
    Behera SK; Bora M; Paul Chowdhury SS; Deb P
    Phys Chem Chem Phys; 2019 Nov; 21(46):25788-25796. PubMed ID: 31728470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe
    Seyler KL; Zhong D; Huang B; Linpeng X; Wilson NP; Taniguchi T; Watanabe K; Yao W; Xiao D; McGuire MA; Fu KC; Xu X
    Nano Lett; 2018 Jun; 18(6):3823-3828. PubMed ID: 29756784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.