These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 31550276)
1. Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis. Li Y; Saxe R; Anzellotti S PLoS One; 2019; 14(9):e0222914. PubMed ID: 31550276 [TBL] [Abstract][Full Text] [Related]
2. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001 [TBL] [Abstract][Full Text] [Related]
3. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
5. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data. Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818 [TBL] [Abstract][Full Text] [Related]
6. The impact of real-time fMRI denoising on online evaluation of brain activity and functional connectivity. Misaki M; Bodurka J J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34126595 [No Abstract] [Full Text] [Related]
7. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI. Steel A; Garcia BD; Silson EH; Robertson CE Neuroimage; 2022 Dec; 264():119723. PubMed ID: 36328274 [TBL] [Abstract][Full Text] [Related]
8. Disentangling time series between brain tissues improves fMRI data quality using a time-dependent deep neural network. Yang Z; Zhuang X; Sreenivasan K; Mishra V; Cordes D; Neuroimage; 2020 Dec; 223():117340. PubMed ID: 32898682 [TBL] [Abstract][Full Text] [Related]
9. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination. Shirer WR; Jiang H; Price CM; Ng B; Greicius MD Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368 [TBL] [Abstract][Full Text] [Related]
10. Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing. Wink AM; Roerdink JB IEEE Trans Med Imaging; 2004 Mar; 23(3):374-87. PubMed ID: 15027530 [TBL] [Abstract][Full Text] [Related]
11. Continuous evaluation of denoising strategies in resting-state fMRI connectivity using fMRIPrep and Nilearn. Wang HT; Meisler SL; Sharmarke H; Clarke N; Gensollen N; Markiewicz CJ; Paugam F; Thirion B; Bellec P PLoS Comput Biol; 2024 Mar; 20(3):e1011942. PubMed ID: 38498530 [TBL] [Abstract][Full Text] [Related]
12. Automatic independent component labeling for artifact removal in fMRI. Tohka J; Foerde K; Aron AR; Tom SM; Toga AW; Poldrack RA Neuroimage; 2008 Feb; 39(3):1227-45. PubMed ID: 18042495 [TBL] [Abstract][Full Text] [Related]
13. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project. Burgess GC; Kandala S; Nolan D; Laumann TO; Power JD; Adeyemo B; Harms MP; Petersen SE; Barch DM Brain Connect; 2016 Nov; 6(9):669-680. PubMed ID: 27571276 [TBL] [Abstract][Full Text] [Related]
15. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising. Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965 [TBL] [Abstract][Full Text] [Related]
16. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353 [TBL] [Abstract][Full Text] [Related]
19. PHYCAA: data-driven measurement and removal of physiological noise in BOLD fMRI. Churchill NW; Yourganov G; Spring R; Rasmussen PM; Lee W; Ween JE; Strother SC Neuroimage; 2012 Jan; 59(2):1299-314. PubMed ID: 21871573 [TBL] [Abstract][Full Text] [Related]
20. A robust deep neural network for denoising task-based fMRI data: An application to working memory and episodic memory. Yang Z; Zhuang X; Sreenivasan K; Mishra V; Curran T; Cordes D Med Image Anal; 2020 Feb; 60():101622. PubMed ID: 31811979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]