These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
582 related articles for article (PubMed ID: 31550346)
1. Extracting entities with attributes in clinical text via joint deep learning. Shi X; Yi Y; Xiong Y; Tang B; Chen Q; Wang X; Ji Z; Zhang Y; Xu H J Am Med Inform Assoc; 2019 Dec; 26(12):1584-1591. PubMed ID: 31550346 [TBL] [Abstract][Full Text] [Related]
2. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
3. Combining relation extraction with function detection for BEL statement extraction. Liu S; Cheng W; Qian L; Zhou G Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30624649 [TBL] [Abstract][Full Text] [Related]
4. A two-stage deep learning approach for extracting entities and relationships from medical texts. Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016 [TBL] [Abstract][Full Text] [Related]
5. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. Wei Q; Ji Z; Li Z; Du J; Wang J; Xu J; Xiang Y; Tiryaki F; Wu S; Zhang Y; Tao C; Xu H J Am Med Inform Assoc; 2020 Jan; 27(1):13-21. PubMed ID: 31135882 [TBL] [Abstract][Full Text] [Related]
6. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records. Cai X; Dong S; Hu J BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622 [TBL] [Abstract][Full Text] [Related]
7. Extracting adverse drug events from clinical Notes: A systematic review of approaches used. Modi S; Kasmiran KA; Mohd Sharef N; Sharum MY J Biomed Inform; 2024 Mar; 151():104603. PubMed ID: 38331081 [TBL] [Abstract][Full Text] [Related]
8. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
9. Applying a deep learning-based sequence labeling approach to detect attributes of medical concepts in clinical text. Xu J; Li Z; Wei Q; Wu Y; Xiang Y; Lee HJ; Zhang Y; Wu S; Xu H BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):236. PubMed ID: 31801529 [TBL] [Abstract][Full Text] [Related]
10. Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning. Li F; Liu W; Yu H JMIR Med Inform; 2018 Nov; 6(4):e12159. PubMed ID: 30478023 [TBL] [Abstract][Full Text] [Related]
11. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods. Christopoulou F; Tran TT; Sahu SK; Miwa M; Ananiadou S J Am Med Inform Assoc; 2020 Jan; 27(1):39-46. PubMed ID: 31390003 [TBL] [Abstract][Full Text] [Related]
12. Clinical Named Entity Recognition from Chinese Electronic Medical Records Based on Deep Learning Pretraining. Gong L; Zhang Z; Chen S J Healthc Eng; 2020; 2020():8829219. PubMed ID: 33299537 [TBL] [Abstract][Full Text] [Related]
13. Clinical concept extraction using transformers. Yang X; Bian J; Hogan WR; Wu Y J Am Med Inform Assoc; 2020 Dec; 27(12):1935-1942. PubMed ID: 33120431 [TBL] [Abstract][Full Text] [Related]
14. Deep learning joint models for extracting entities and relations in biomedical: a survey and comparison. Su Y; Wang M; Wang P; Zheng C; Liu Y; Zeng X Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36125190 [TBL] [Abstract][Full Text] [Related]
15. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System. Kim Y; Heider PM; Lally IR; Meystre SM JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370 [TBL] [Abstract][Full Text] [Related]
16. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models. Dandala B; Joopudi V; Tsou CH; Liang JJ; Suryanarayanan P JMIR Med Inform; 2020 Jul; 8(7):e18417. PubMed ID: 32459650 [TBL] [Abstract][Full Text] [Related]
17. Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text. Li Z; Yang Z; Shen C; Xu J; Zhang Y; Xu H BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):22. PubMed ID: 30700301 [TBL] [Abstract][Full Text] [Related]
18. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records. Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540 [TBL] [Abstract][Full Text] [Related]
19. Entity recognition from clinical texts via recurrent neural network. Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566 [TBL] [Abstract][Full Text] [Related]
20. Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text. Fan Y; Zhou S; Li Y; Zhang R J Am Med Inform Assoc; 2021 Mar; 28(3):569-577. PubMed ID: 33150942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]