BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31550388)

  • 21. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2015 Jul; 1404():124-30. PubMed ID: 26044384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isoelectric focusing in a silica nanofluidic channel: effects of electromigration and electroosmosis.
    Hsu WL; Inglis DW; Startsev MA; Goldys EM; Davidson MR; Harvie DJ
    Anal Chem; 2014 Sep; 86(17):8711-8. PubMed ID: 25098739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration.
    Cao CX; Fan LY; Zhang W
    Analyst; 2008 Sep; 133(9):1139-57. PubMed ID: 18709186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mobilization of electroosmotic flow markers in capillary zone electrophoresis.
    Martínková E; Křížek T; Kubíčková A; Coufal P
    Electrophoresis; 2021 Apr; 42(7-8):932-938. PubMed ID: 33570209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Taylor-Aris diffusivity on analyte and system zone dispersion in CZE assessed by computer simulation and experimental validation.
    Caslavska J; Mosher RA; Thormann W
    Electrophoresis; 2015 Jul; 36(14):1529-38. PubMed ID: 25820794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of the ionic strength of acidic background electrolytes on the separation of proteins by capillary electrophoresis.
    Bekri S; Leclercq L; Cottet H
    J Chromatogr A; 2016 Feb; 1432():145-51. PubMed ID: 26780847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrically controlled focusing of proteins and ampholytes between two modified electrolytes. Computer simulation.
    Deml M; Pospíchal J
    Appl Theor Electrophor; 1994; 4(3):107-15. PubMed ID: 7612692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing.
    Dutta D
    J Chromatogr A; 2017 Feb; 1484():85-92. PubMed ID: 28081900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conductivity properties of carrier ampholyte pH gradients in isoelectric focusing.
    Stoyanov AV; Das C; Fredrickson CK; Fan ZH
    Electrophoresis; 2005 Jan; 26(2):473-9. PubMed ID: 15657903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the pI of human rhinovirus serotype 2 by capillary isoelectric focusing.
    Schnabel U; Groiss F; Blaas D; Kenndler E
    Anal Chem; 1996 Dec; 68(23):4300-3. PubMed ID: 8946796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional capillary electrophoresis involving capillary isoelectric focusing and capillary zone electrophoresis.
    Yang C; Zhang L; Liu H; Zhang W; Zhang Y
    J Chromatogr A; 2003 Nov; 1018(1):97-103. PubMed ID: 14582630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of Recombinant Therapeutic Proteins Using Capillary Gel Electrophoresis and Capillary Isoelectric Focusing.
    De Jong CA; Risley J; Lee AK; Zhao SS; Chen DD
    Methods Mol Biol; 2016; 1466():137-49. PubMed ID: 27473487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of arginase isoforms by capillary zone electrophoresis and isoelectric focusing in density gradient column.
    Pedrosa MM; Legaz ME
    Electrophoresis; 1995 Apr; 16(4):659-69. PubMed ID: 7588541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new type of migrating zone boundary in electrophoresis: 1. General description of boundary behavior based on electromigration dispersion velocity profiles.
    Gebauer P; Bocek P
    Electrophoresis; 2005 Jan; 26(2):453-62. PubMed ID: 15657895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dynamics of band (peak) shape development in capillary zone electrophoresis in light of the linear theory of electromigration.
    Dvořák M; Dubský P; Dovhunová M; Gaš B
    Electrophoresis; 2019 Mar; 40(5):668-682. PubMed ID: 30478971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
    Foley JP; Blackney DM; Ennis EJ
    J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical aspects of carrier ampholyte-free isoelectric focusing.
    Pospíchal J; Glovinová E
    J Chromatogr A; 2001 May; 918(1):195-203. PubMed ID: 11403448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. System peaks in capillary zone electrophoresis of anions with negative voltage polarity and counter-electroosmotic flow.
    Sursyakova VV; Kalyakin SN; Burmakina GV; Rubaylo AI
    Electrophoresis; 2011 Jan; 32(2):210-7. PubMed ID: 21254117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent.
    Palonen S; Porras SP; Jussila M; Riekkola ML
    Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.