These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 31550411)
1. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal-Organic Framework (MOF). Suresh K; Matzger AJ Angew Chem Int Ed Engl; 2019 Nov; 58(47):16790-16794. PubMed ID: 31550411 [TBL] [Abstract][Full Text] [Related]
2. Curcumin Delivery on Metal-Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family. Lawson S; Newport K; Pederniera N; Rownaghi AA; Rezaei F ACS Appl Bio Mater; 2021 Apr; 4(4):3423-3432. PubMed ID: 35014426 [TBL] [Abstract][Full Text] [Related]
3. Refining stability and dissolution rate of amorphous drug formulations. Grohganz H; Priemel PA; Löbmann K; Nielsen LH; Laitinen R; Mullertz A; Van den Mooter G; Rades T Expert Opin Drug Deliv; 2014 Jun; 11(6):977-89. PubMed ID: 24754747 [TBL] [Abstract][Full Text] [Related]
4. Moisture-Induced Amorphous Phase Separation of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance. Chen H; Pui Y; Liu C; Chen Z; Su CC; Hageman M; Hussain M; Haskell R; Stefanski K; Foster K; Gudmundsson O; Qian F J Pharm Sci; 2018 Jan; 107(1):317-326. PubMed ID: 29107047 [TBL] [Abstract][Full Text] [Related]
5. Surface Stabilization and Dissolution Rate Improvement of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All? Novakovic D; Peltonen L; Isomäki A; Fraser-Miller SJ; Nielsen LH; Laaksonen T; Strachan CJ Mol Pharm; 2020 Apr; 17(4):1248-1260. PubMed ID: 32027513 [TBL] [Abstract][Full Text] [Related]
6. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs. Sarode AL; Wang P; Obara S; Worthen DR Eur J Pharm Biopharm; 2014 Apr; 86(3):351-60. PubMed ID: 24161655 [TBL] [Abstract][Full Text] [Related]
7. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Indulkar AS; Lou X; Zhang GGZ; Taylor LS Mol Pharm; 2019 Mar; 16(3):1327-1339. PubMed ID: 30669846 [TBL] [Abstract][Full Text] [Related]
8. Combined Ibuprofen and Curcumin Delivery Using Mg-MOF-74 as a Single Nanocarrier. Lawson S; Rownaghi AA; Rezaei F ACS Appl Bio Mater; 2022 Jan; 5(1):265-271. PubMed ID: 35014812 [TBL] [Abstract][Full Text] [Related]
9. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. Sun DD; Lee PI J Control Release; 2015 Aug; 211():85-93. PubMed ID: 26054795 [TBL] [Abstract][Full Text] [Related]
10. Evolution of supersaturation of amorphous pharmaceuticals: nonlinear rate of supersaturation generation regulated by matrix diffusion. Sun DD; Lee PI Mol Pharm; 2015 Apr; 12(4):1203-15. PubMed ID: 25775257 [TBL] [Abstract][Full Text] [Related]
11. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. Baghel S; Cathcart H; O'Reilly NJ J Pharm Sci; 2016 Sep; 105(9):2527-2544. PubMed ID: 26886314 [TBL] [Abstract][Full Text] [Related]
12. Recent Advances in Understanding the Micro- and Nanoscale Phenomena of Amorphous Solid Dispersions. Ricarte RG; Van Zee NJ; Li Z; Johnson LM; Lodge TP; Hillmyer MA Mol Pharm; 2019 Oct; 16(10):4089-4103. PubMed ID: 31487183 [TBL] [Abstract][Full Text] [Related]
13. Drug-polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development. Qian F; Huang J; Hussain MA J Pharm Sci; 2010 Jul; 99(7):2941-7. PubMed ID: 20127825 [TBL] [Abstract][Full Text] [Related]
14. Mixing Mg-MOF-74 with Zn-MOF-74: A Facile Pathway of Controlling the Pharmacokinetic Release Rate of Curcumin. Lawson S; Siemers A; Kostlenick J; Al-Naddaf Q; Newport K; Rownaghi AA; Rezaei F ACS Appl Bio Mater; 2021 Sep; 4(9):6874-6880. PubMed ID: 35006987 [TBL] [Abstract][Full Text] [Related]
15. Investigation into the Solid-State Properties and Dissolution Profile of Spray-Dried Ternary Amorphous Solid Dispersions: A Rational Step toward the Design and Development of a Multicomponent Amorphous System. Baghel S; Cathcart H; O'Reilly NJ Mol Pharm; 2018 Sep; 15(9):3796-3812. PubMed ID: 30020788 [TBL] [Abstract][Full Text] [Related]
16. A comparative study on the effects of amphiphilic and hydrophilic polymers on the release profiles of a poorly water-soluble drug. Irwan AW; Berania JE; Liu X Pharm Dev Technol; 2016 Mar; 21(2):231-8. PubMed ID: 25496001 [TBL] [Abstract][Full Text] [Related]
17. Metal-Organic Framework Composites for Theragnostics and Drug Delivery Applications. Osterrieth JWM; Fairen-Jimenez D Biotechnol J; 2021 Feb; 16(2):e2000005. PubMed ID: 32330358 [TBL] [Abstract][Full Text] [Related]
18. Drug-Facilitated Crystallization of Spray-Dried CD-MOFs with Tunable Morphology, Porosity, And Dissolution Profile. Kadota K; Tse JY; Fujita S; Suzuki N; Uchiyama H; Tozuka Y; Tanaka S ACS Appl Bio Mater; 2023 Sep; 6(9):3451-3462. PubMed ID: 37184656 [TBL] [Abstract][Full Text] [Related]
20. Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Chen L; Zhang J; Zhou X; Yang S; Zhang Q; Wang W; You Z; Peng C; He C Acta Biomater; 2019 Mar; 86():406-415. PubMed ID: 30625415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]