BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

722 related articles for article (PubMed ID: 31550457)

  • 1. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cerebrospinal fluid promotes spontaneous gamma oscillations in the hippocampus in vitro.
    Bjorefeldt A; Roshan F; Forsberg M; Zetterberg H; Hanse E; Fisahn A
    Hippocampus; 2020 Feb; 30(2):101-113. PubMed ID: 31313871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons.
    Kang YJ; Lewis HES; Young MW; Govindaiah G; Greenfield LJ; Garcia-Rill E; Lee SH
    Neuroscience; 2018 Apr; 376():80-93. PubMed ID: 29462702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Entorhinal Cortical Alvear Pathway Differentially Excites Pyramidal Cells and Interneuron Subtypes in Hippocampal CA1.
    Bell KA; Delong R; Goswamee P; McQuiston AR
    Cereb Cortex; 2021 Mar; 31(5):2382-2401. PubMed ID: 33350452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1.
    Nagode DA; Tang AH; Yang K; Alger BE
    J Physiol; 2014 Jan; 592(1):103-23. PubMed ID: 24190932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of somatostatin and parvalbumin interneurons circuit dysfunctions underlying hippocampal theta and gamma oscillations impaired by amyloid β oligomers in vivo.
    Chung H; Park K; Jang HJ; Kohl MM; Kwag J
    Brain Struct Funct; 2020 Apr; 225(3):935-954. PubMed ID: 32107637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis.
    Hollnagel JO; Elzoheiry S; Gorgas K; Kins S; Beretta CA; Kirsch J; Kuhse J; Kann O; Kiss E
    PLoS One; 2019; 14(1):e0209228. PubMed ID: 30645585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.
    Antonoudiou P; Tan YL; Kontou G; Upton AL; Mann EO
    J Neurosci; 2020 Sep; 40(40):7668-7687. PubMed ID: 32859716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-specific synaptic plasticity induced by network oscillations.
    Zarnadze S; Bäuerle P; Santos-Torres J; Böhm C; Schmitz D; Geiger JR; Dugladze T; Gloveli T
    Elife; 2016 May; 5():. PubMed ID: 27218453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus.
    Bartley AF; Lucas EK; Brady LJ; Li Q; Hablitz JJ; Cowell RM; Dobrunz LE
    J Neurosci; 2015 Nov; 35(46):15276-90. PubMed ID: 26586816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord.
    Ziskind-Conhaim L; Wu L; Wiesner EP
    J Neurophysiol; 2008 Oct; 100(4):2254-64. PubMed ID: 18667543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons.
    Combe CL; Canavier CC; Gasparini S
    J Neurosci; 2018 Sep; 38(38):8110-8127. PubMed ID: 30076213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A small molecule activator of Na
    Frederiksen K; Lu D; Yang J; Jensen HS; Bastlund JF; Larsen PH; Liu H; Crestey F; Dekermendjian K; Badolo L; Laursen M; Hougaard C; Yang C; Svenstrup N; Grunnet M
    Eur J Neurosci; 2017 Aug; 46(3):1887-1896. PubMed ID: 28635024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic activation of cajal-retzius cells reveals their glutamatergic output and a novel feedforward circuit in the developing mouse hippocampus.
    Quattrocolo G; Maccaferri G
    J Neurosci; 2014 Sep; 34(39):13018-32. PubMed ID: 25253849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.
    Butler JL; Mendonça PR; Robinson HP; Paulsen O
    J Neurosci; 2016 Apr; 36(15):4155-69. PubMed ID: 27076416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus.
    Lasztóczi B; Klausberger T
    Neuron; 2014 Mar; 81(5):1126-1139. PubMed ID: 24607232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABAergic Interneurons are Required for Generation of Slow CA1 Oscillation in Rat Hippocampus.
    Xu Y; Wang L; Liu YZ; Yang Y; Xue X; Wang Z
    Neurosci Bull; 2016 Aug; 32(4):363-73. PubMed ID: 27439706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices.
    Li C; Wang J; Zhao J; Wang Y; Liu Z; Guo FL; Wang XF; Vreugdenhil M; Lu CB
    Eur J Neurosci; 2016 Sep; 44(5):2236-46. PubMed ID: 27336700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing.
    Chapman CA; Lacaille JC
    J Neurosci; 1999 Oct; 19(19):8637-45. PubMed ID: 10493764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.