BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31550520)

  • 1. Quantitative prediction of repeat dose toxicity values using GenRA.
    Helman G; Patlewicz G; Shah I
    Regul Toxicol Pharmacol; 2019 Dec; 109():104480. PubMed ID: 31550520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transitioning the Generalised Read-Across approach (GenRA) to quantitative predictions: A case study using acute oral toxicity data.
    Helman G; Shah I; Patlewicz G
    Comput Toxicol; 2019 Nov; 12(November 2019):. PubMed ID: 33623834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Read-Across (GenRA): A workflow implemented into the EPA CompTox Chemicals Dashboard.
    Helman G; Shah I; Williams AJ; Edwards J; Dunne J; Patlewicz G
    ALTEX; 2019; 36(3):462-465. PubMed ID: 30741315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information.
    Shah I; Liu J; Judson RS; Thomas RS; Patlewicz G
    Regul Toxicol Pharmacol; 2016 Aug; 79():12-24. PubMed ID: 27174420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeat-dose toxicity prediction with Generalized Read-Across (GenRA) using targeted transcriptomic data: A proof-of-concept case study.
    Tate T; Wambaugh J; Patlewicz G; Shah I
    Comput Toxicol; 2021 Aug; 19():1-12. PubMed ID: 37309449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ToxRefDB version 2.0: Improved utility for predictive and retrospective toxicology analyses.
    Watford S; Ly Pham L; Wignall J; Shin R; Martin MT; Friedman KP
    Reprod Toxicol; 2019 Oct; 89():145-158. PubMed ID: 31340180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the Generalised Read-Across approach (GenRA): A systematic analysis of the impact of physicochemical property information on read-across performance.
    Helman G; Shah I; Patlewicz G
    Comput Toxicol; 2018; 8():34-50. PubMed ID: 31667446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Read-Across prediction using genra-py.
    Shah I; Tate T; Patlewicz G
    Bioinformatics; 2021 Oct; 37(19):3380-3381. PubMed ID: 33772575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating potential refinements to existing Threshold of Toxicological Concern (TTC) values for environmentally-relevant compounds.
    Nelms MD; Pradeep P; Patlewicz G
    Regul Toxicol Pharmacol; 2019 Dec; 109():104505. PubMed ID: 31639428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.
    Yost EE; Stanek J; DeWoskin RS; Burgoon LD
    Environ Sci Technol; 2016 Jul; 50(14):7732-42. PubMed ID: 27172125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. True prediction of lowest observed adverse effect levels.
    García-Domenech R; de Julián-Ortiz JV; Besalú E
    Mol Divers; 2006 May; 10(2):159-68. PubMed ID: 16721628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of effect levels of chemicals from quantitative structure-activity relationship (QSAR) models. I. Chronic lowest-observed-adverse-effect level (LOAEL).
    Mumtaz MM; Knauf LA; Reisman DJ; Peirano WB; DeRosa CT; Gombar VK; Enslein K; Carter JR; Blake BW; Huque KI
    Toxicol Lett; 1995 Sep; 79(1-3):131-43. PubMed ID: 7570650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a hybrid read-across method to evaluate chemical toxicity based on chemical structure and biological data.
    Guo Y; Zhao L; Zhang X; Zhu H
    Ecotoxicol Environ Saf; 2019 Aug; 178():178-187. PubMed ID: 31004930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in using the ToxRefDB as a resource for toxicity prediction modeling.
    Plunkett LM; Kaplan AM; Becker RA
    Regul Toxicol Pharmacol; 2015 Aug; 72(3):610-4. PubMed ID: 26003516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of in silico, in vitro, and in vivo toxicity benchmarks suggests a role for ToxCast data in ecological hazard assessment.
    Schaupp CM; Maloney EM; Mattingly KZ; Olker JH; Villeneuve DL
    Toxicol Sci; 2023 Sep; 195(2):145-154. PubMed ID: 37490521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A research to develop a predicting system of mammalian subacute toxicity. I. Prediction of subacute toxicity using the biological parameters of acute toxicities.
    Yamaguchi T; Nishimura H; Watanabe T; Saito S; Yabuki M; Shiba K; Isobe N; Kishida F; Kumano M; Shono F; Adachi H; Matsuo M
    Chemosphere; 1996 Mar; 32(5):979-98. PubMed ID: 8867144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic oral LOAEL prediction by using a commercially available computational QSAR tool.
    Rupp B; Appel KE; Gundert-Remy U
    Arch Toxicol; 2010 Sep; 84(9):681-8. PubMed ID: 20224925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a CSRML version of the Analog Identification Methodology (AIM) fragments and their evaluation within the Generalised Read-Across (GenRA) approach.
    Adams M; Hidle H; Chang D; Richard AM; Williams AJ; Shah I; Patlewicz G
    Comput Toxicol; 2023 Feb; 25():. PubMed ID: 36733411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA's ToxRefDB.
    Knudsen TB; Martin MT; Kavlock RJ; Judson RS; Dix DJ; Singh AV
    Reprod Toxicol; 2009 Sep; 28(2):209-19. PubMed ID: 19446433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.