These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 31550883)
1. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces. Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883 [TBL] [Abstract][Full Text] [Related]
2. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics. Kell AJ; Paquet C; Mozenson O; Djavani-Tabrizi I; Deore B; Liu X; Lopinski GP; James R; Hettak K; Shaker J; Momciu A; Ferrigno J; Ferrand O; Hu JX; Lafrenière S; Malenfant PRL ACS Appl Mater Interfaces; 2017 May; 9(20):17226-17237. PubMed ID: 28466636 [TBL] [Abstract][Full Text] [Related]
3. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. Kanzaki M; Kawaguchi Y; Kawasaki H ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Hybrid Ink Formulation and IPL Sintering Process for Ink-Jet 3D Printing. Lee JY; Choi CS; Hwang KT; Han KS; Kim JH; Nahm S; Kim BS Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069153 [TBL] [Abstract][Full Text] [Related]
7. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags. Hong H; Hu J; Yan X ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of solderable intense pulsed light sintered hybrid copper for flexible conductive electrodes. Jang YR; Jeong R; Kim HS; Park SS Sci Rep; 2021 Jul; 11(1):14551. PubMed ID: 34267284 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink. Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555 [TBL] [Abstract][Full Text] [Related]
10. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light. Chung WY; Lai YC; Yonezawa T; Liao YC Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711 [TBL] [Abstract][Full Text] [Related]
11. Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C. Li W; Li CF; Lang F; Jiu J; Ueshima M; Wang H; Liu ZQ; Suganuma K Nanoscale; 2018 Mar; 10(11):5254-5263. PubMed ID: 29498383 [TBL] [Abstract][Full Text] [Related]
12. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Wu X; Shao S; Chen Z; Cui Z Nanotechnology; 2017 Jan; 28(3):035203. PubMed ID: 27941231 [TBL] [Abstract][Full Text] [Related]
13. Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures. Tomotoshi D; Oogami R; Kawasaki H ACS Appl Mater Interfaces; 2021 May; 13(17):20906-20915. PubMed ID: 33891413 [TBL] [Abstract][Full Text] [Related]
14. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance. Li W; Hu D; Li L; Li CF; Jiu J; Chen C; Ishina T; Sugahara T; Suganuma K ACS Appl Mater Interfaces; 2017 Jul; 9(29):24711-24721. PubMed ID: 28675295 [TBL] [Abstract][Full Text] [Related]
15. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. Joo SJ; Park SH; Moon CJ; Kim HS ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508 [TBL] [Abstract][Full Text] [Related]
16. Filtration-induced production of conductive/robust Cu films on cellulose paper by low-temperature sintering in air. Sakurai S; Akiyama Y; Kawasaki H R Soc Open Sci; 2018 Jul; 5(7):172417. PubMed ID: 30109061 [TBL] [Abstract][Full Text] [Related]
17. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes. Yu MH; Joo SJ; Kim HS Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291 [TBL] [Abstract][Full Text] [Related]
18. Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure. Park HJ; Jo Y; Cho MK; Young Woo J; Kim D; Lee SY; Choi Y; Jeong S Nanoscale; 2018 Mar; 10(11):5047-5053. PubMed ID: 29411848 [TBL] [Abstract][Full Text] [Related]
19. Interface Modified Flexible Printed Conductive Films via Ag Meng Y; Ma T; Pavinatto FJ; MacKenzie JD ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404 [TBL] [Abstract][Full Text] [Related]
20. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]