BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31551666)

  • 21. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An implantable wireless optogenetic stimulation system for peripheral nerve control.
    Kang-Il Song ; Park SE; Myoung-Soo Kim ; Chulmin Joo ; Yong-Jun Kim ; Suh JK; Dosik Hwang ; Inchan Youn
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1033-6. PubMed ID: 26736441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation.
    Kim D; Yokota T; Suzuki T; Lee S; Woo T; Yukita W; Koizumi M; Tachibana Y; Yawo H; Onodera H; Sekino M; Someya T
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21138-21146. PubMed ID: 32817422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CerebraLux: a low-cost, open-source, wireless probe for optogenetic stimulation.
    Dagnew R; Lin YY; Agatep J; Cheng M; Jann A; Quach V; Monroe M; Singh G; Minasyan A; Hakimian J; Kee T; Cushman J; Walwyn W
    Neurophotonics; 2017 Oct; 4(4):045001. PubMed ID: 29057282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A wireless, smartphone controlled, battery powered, head mounted light delivery system for optogenetic stimulation.
    Kouhani MHM; Luo R; Madi F; Weber AJ; Li W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3366-3369. PubMed ID: 30441109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lightweight, wireless LED implant for chronic manipulation in vivo of spontaneous activity in neonatal mice.
    Leighton AH; Victoria Fernández Busch M; Coppens JE; Heimel JA; Lohmann C
    J Neurosci Methods; 2022 May; 373():109548. PubMed ID: 35240222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wireless multilateral devices for optogenetic studies of individual and social behaviors.
    Yang Y; Wu M; Vázquez-Guardado A; Wegener AJ; Grajales-Reyes JG; Deng Y; Wang T; Avila R; Moreno JA; Minkowicz S; Dumrongprechachan V; Lee J; Zhang S; Legaria AA; Ma Y; Mehta S; Franklin D; Hartman L; Bai W; Han M; Zhao H; Lu W; Yu Y; Sheng X; Banks A; Yu X; Donaldson ZR; Gereau RW; Good CH; Xie Z; Huang Y; Kozorovitskiy Y; Rogers JA
    Nat Neurosci; 2021 Jul; 24(7):1035-1045. PubMed ID: 33972800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optogenetic modulation of cortical neurons using organic light emitting diodes (OLEDs).
    Sridharan A; Shah A; Kumar SS; Kyeh J; Smith J; Blain-Christen J; Muthuswamy J
    Biomed Phys Eng Express; 2020 Feb; 6(2):025003. PubMed ID: 33438629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator.
    Lee ST; Williams PA; Braine CE; Lin DT; John SW; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):655-64. PubMed ID: 25608307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optogenetic Activation of Non-Nociceptive Aβ Fibers Induces Neuropathic Pain-Like Sensory and Emotional Behaviors after Nerve Injury in Rats.
    Tashima R; Koga K; Sekine M; Kanehisa K; Kohro Y; Tominaga K; Matsushita K; Tozaki-Saitoh H; Fukazawa Y; Inoue K; Yawo H; Furue H; Tsuda M
    eNeuro; 2018; 5(1):. PubMed ID: 29468190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics.
    McCall JG; Qazi R; Shin G; Li S; Ikram MH; Jang KI; Liu Y; Al-Hasani R; Bruchas MR; Jeong JW; Rogers JA
    Nat Protoc; 2017 Feb; 12(2):219-237. PubMed ID: 28055036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo optogenetic activation of Na
    Uhelski ML; Bruce DJ; Séguéla P; Wilcox GL; Simone DA
    J Neurophysiol; 2017 Jun; 117(6):2218-2223. PubMed ID: 28298301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience.
    Yang Y; Wu M; Wegener AJ; Vázquez-Guardado A; Efimov AI; Lie F; Wang T; Ma Y; Banks A; Li Z; Xie Z; Huang Y; Good CH; Kozorovitskiy Y; Rogers JA
    Nat Protoc; 2022 Apr; 17(4):1073-1096. PubMed ID: 35173306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A wireless implantable switched-capacitor based optogenetic stimulating system.
    Lee HM; Kwon KY; Li W; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():878-81. PubMed ID: 25570099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging Optoelectronic Devices Based on Microscale LEDs and Their Use as Implantable Biomedical Applications.
    Zhang H; Peng Y; Zhang N; Yang J; Wang Y; Ding H
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A wirelessly controlled implantable LED system for deep brain optogenetic stimulation.
    Rossi MA; Go V; Murphy T; Fu Q; Morizio J; Yin HH
    Front Integr Neurosci; 2015; 9():8. PubMed ID: 25713516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry.
    Kim J; Gutruf P; Chiarelli AM; Heo SY; Cho K; Xie Z; Banks A; Han S; Jang KI; Lee JW; Lee KT; Feng X; Huang Y; Fabiani M; Gratton G; Paik U; Rogers JA
    Adv Funct Mater; 2017 Jan; 27(1):. PubMed ID: 28798658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust, wireless gastric optogenetic implants for the study of peripheral pathways and applications in obesity
    Kim WS; Hong S; Park SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5742-5746. PubMed ID: 34892424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping.
    Lee JM; Lin D; Kim HR; Pyo YW; Hong G; Lieber CM; Park HG
    Nano Lett; 2021 Apr; 21(7):3184-3190. PubMed ID: 33734716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.