These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31551949)

  • 21. Oceanic Crustal Fluid Single Cell Genomics Complements Metagenomic and Metatranscriptomic Surveys With Orders of Magnitude Less Sample Volume.
    D'Angelo T; Goordial J; Poulton NJ; Seyler L; Huber JA; Stepanauskas R; Orcutt BN
    Front Microbiol; 2021; 12():738231. PubMed ID: 35140689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The deep subsurface biosphere in igneous ocean crust: frontier habitats for microbiological exploration.
    Edwards KJ; Fisher AT; Wheat CG
    Front Microbiol; 2012; 3():8. PubMed ID: 22347212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat.
    Huber JA; Butterfield DA; Baross JA
    Appl Environ Microbiol; 2002 Apr; 68(4):1585-94. PubMed ID: 11916672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids.
    Jungbluth SP; Amend JP; Rappé MS
    Sci Data; 2017 Mar; 4():170037. PubMed ID: 28350381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atribacteria Reproducing over Millions of Years in the Atlantic Abyssal Subseafloor.
    Vuillemin A; Vargas S; Coskun ÖK; Pockalny R; Murray RW; Smith DC; D'Hondt S; Orsi WD
    mBio; 2020 Oct; 11(5):. PubMed ID: 33024037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel microbial habitat in the mid-ocean ridge subseafloor.
    Summit M; Baross JA
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2158-63. PubMed ID: 11226209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge.
    Canales JP; Nedimović MR; Kent GM; Carbotte SM; Detrick RS
    Nature; 2009 Jul; 460(7251):89-93. PubMed ID: 19571883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.
    Grosch EG; Hazen RM
    Astrobiology; 2015 Oct; 15(10):922-39. PubMed ID: 26430911
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Hoshino T; Toki T; Ijiri A; Morono Y; Machiyama H; Ashi J; Okamura K; Inagaki F
    Front Microbiol; 2017; 8():1135. PubMed ID: 28676800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank.
    Jungbluth SP; Grote J; Lin HT; Cowen JP; Rappé MS
    ISME J; 2013 Jan; 7(1):161-72. PubMed ID: 22791235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption.
    Huber JA; Butterfield DA; Baross JA
    FEMS Microbiol Ecol; 2003 Apr; 43(3):393-409. PubMed ID: 19719671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments.
    Hoshino T; Inagaki F
    Lett Appl Microbiol; 2017 May; 64(5):355-363. PubMed ID: 28256106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial Diversity and Function in Shallow Subsurface Sediment and Oceanic Lithosphere of the Atlantis Massif.
    Goordial J; D'Angelo T; Labonté JM; Poulton NJ; Brown JM; Stepanauskas R; Früh-Green GL; Orcutt BN
    mBio; 2021 Aug; 12(4):e0049021. PubMed ID: 34340550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Driving forces behind the biotope structures in two low-temperature hydrothermal venting sites on the southern Mid-Atlantic Ridge.
    Perner M; Hentscher M; Rychlik N; Seifert R; Strauss H; Bach W
    Environ Microbiol Rep; 2011 Dec; 3(6):727-37. PubMed ID: 23761363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids.
    Bhattacharjee AS; Schulz F; Woyke T; Orcutt BN; Martínez Martínez J
    ISME Commun; 2023 Feb; 3(1):10. PubMed ID: 36732595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model.
    Orcutt BN; Wheat CG; Rouxel O; Hulme S; Edwards KJ; Bach W
    Nat Commun; 2013; 4():2539. PubMed ID: 24071791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.
    Fichtel K; Mathes F; Könneke M; Cypionka H; Engelen B
    Front Microbiol; 2012; 3():65. PubMed ID: 22363336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metagenomic Insights Into the Microbial Iron Cycle of Subseafloor Habitats.
    Garber AI; Cohen AB; Nealson KH; Ramírez GA; Barco RA; Enzingmüller-Bleyl TC; Gehringer MM; Merino N
    Front Microbiol; 2021; 12():667944. PubMed ID: 34539592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems.
    Jungbluth SP; Glavina Del Rio T; Tringe SG; Stepanauskas R; Rappé MS
    PeerJ; 2017; 5():e3134. PubMed ID: 28396823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters.
    Wu X; Pedersen K; Edlund J; Eriksson L; Åström M; Andersson AF; Bertilsson S; Dopson M
    Microbiome; 2017 Mar; 5(1):37. PubMed ID: 28335808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.