These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31551997)

  • 21. First Report of Stem and Crown Rot of Garbanzo Caused by Sclerotinia minor in the United States and by Sclerotinia sclerotiorum in Arizona.
    Matheron ME; Porchas M
    Plant Dis; 2000 Nov; 84(11):1250. PubMed ID: 30832177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant-beneficial Streptomyces dioscori SF1 potential biocontrol and plant growth promotion in saline soil within the arid and semi-arid areas.
    Li X; Lang D; Wang J; Zhang W; Zhang X
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):70194-70212. PubMed ID: 37145360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Sclerotia and Apothecia of Sclerotinia sclerotiorum from Infected Soybean Seed and Its Control by Fungicide Seed Treatment.
    Mueller DS; Hartman GL; Pedersen WL
    Plant Dis; 1999 Dec; 83(12):1113-1115. PubMed ID: 30841133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Taxonomic Characterization, and Secondary Metabolite Analysis of
    Yu Z; Han C; Yu B; Zhao J; Yan Y; Huang S; Liu C; Xiang W
    Microorganisms; 2020 Jan; 8(1):. PubMed ID: 31948045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic and metabolic features of Bacillus cereus, inhibiting the growth of Sclerotinia sclerotiorum by synthesizing secondary metabolites.
    Hu J; Dong B; Wang D; Meng H; Li X; Zhou H
    Arch Microbiol; 2022 Dec; 205(1):8. PubMed ID: 36454319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.
    Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E
    J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A
    Ling L; Han X; Li X; Zhang X; Wang H; Zhang L; Cao P; Wu Y; Wang X; Zhao J; Xiang W
    Microorganisms; 2020 Mar; 8(3):. PubMed ID: 32121616
    [No Abstract]   [Full Text] [Related]  

  • 29. Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination.
    Cheng Q; Hu C; Jia W; Cai M; Zhao Y; Tang Y; Yang D; Zhou Y; Sun X; Zhao X
    Ecotoxicol Environ Saf; 2019 Nov; 183():109503. PubMed ID: 31394376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First Report of Sclerotinia sclerotiorum Infection on Cuphea.
    Gulya TJ; Gesch RW; Bradley CA; Del Rio LE; Johnson BL
    Plant Dis; 2006 Dec; 90(12):1554. PubMed ID: 30780987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation, Identification, Biocontrol Activity, and Plant Growth Promoting Capability of a Superior
    Rehan M; Alsohim AS; Abidou H; Rasheed Z; Al Abdulmonem W
    Pol J Microbiol; 2021 Jun; 70(2):245-256. PubMed ID: 34349814
    [No Abstract]   [Full Text] [Related]  

  • 32. Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.
    Xu WF; Ren HS; Ou T; Lei T; Wei JH; Huang CS; Li T; Strobel G; Zhou ZY; Xie J
    Microb Ecol; 2019 Apr; 77(3):651-663. PubMed ID: 30178387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains.
    Sabaté DC; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC
    Microbiol Res; 2018 Jun; 211():21-30. PubMed ID: 29705203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antifungal Activity and Action Mechanism of the Natural Product Cinnamic Acid Against
    Wang Y; Sun Y; Wang J; Zhou M; Wang M; Feng J
    Plant Dis; 2019 May; 103(5):944-950. PubMed ID: 30895869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficacy of Plant Growth-Promoting Bacteria
    Zhou H; Ren ZH; Zu X; Yu XY; Zhu HJ; Li XJ; Zhong J; Liu EM
    Front Microbiol; 2021; 12():684888. PubMed ID: 34354684
    [No Abstract]   [Full Text] [Related]  

  • 36. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum.
    Yang F; Abdelnabby H; Xiao Y
    Microb Pathog; 2015 Dec; 89():169-76. PubMed ID: 26521137
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Han C; Yu Z; Zhao J; Shi H; Hu J; Yu B; Song J; Shen Y; Xiang W; Wang X
    Int J Syst Evol Microbiol; 2020 Jan; 70(1):126-138. PubMed ID: 31613740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens.
    Wu Y; Yuan J; E Y; Raza W; Shen Q; Huang Q
    J Basic Microbiol; 2015 Sep; 55(9):1104-17. PubMed ID: 26059065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual functionality of
    Silva LG; Camargo RC; Mascarin GM; Nunes PSO; Dunlap C; Bettiol W
    Front Plant Sci; 2022; 13():983127. PubMed ID: 36275544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Community Structures and Antifungal Activity of Root-Associated Endophytic Actinobacteria in Healthy and Diseased Cucumber Plants and Streptomyces sp. HAAG3-15 as a Promising Biocontrol Agent.
    Cao P; Li C; Wang H; Yu Z; Xu X; Wang X; Zhao J; Xiang W
    Microorganisms; 2020 Feb; 8(2):. PubMed ID: 32050670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.