These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31552026)
21. Cytokine production through PKC/p38 signaling pathways, not through JAK/STAT1 pathway, in mast cells stimulated with IFNgamma. Seo JY; Kim DY; Lee YS; Ro JY Cytokine; 2009 Apr; 46(1):51-60. PubMed ID: 19231233 [TBL] [Abstract][Full Text] [Related]
22. Expression of vascular endothelial growth inhibitor (VEGI) in human urothelial cancer of the bladder and its effects on the adhesion and migration of bladder cancer cells in vitro. Zhang N; Sanders AJ; Ye L; Kynaston HG; Jiang WG Anticancer Res; 2010 Jan; 30(1):87-95. PubMed ID: 20150621 [TBL] [Abstract][Full Text] [Related]
23. Correlation between messenger RNA expression and protein expression of immune checkpoint-associated molecules in bladder urothelial carcinoma: A retrospective study. Le Goux C; Damotte D; Vacher S; Sibony M; Delongchamps NB; Schnitzler A; Terris B; Zerbib M; Bieche I; Pignot G Urol Oncol; 2017 May; 35(5):257-263. PubMed ID: 28291636 [TBL] [Abstract][Full Text] [Related]
24. PD-L1 expression in tumor cells and the immunologic milieu of bladder carcinomas: a pathologic review of 165 cases. Davick JJ; Frierson HF; Smolkin M; Gru AA Hum Pathol; 2018 Nov; 81():184-191. PubMed ID: 29969606 [TBL] [Abstract][Full Text] [Related]
26. Interferon-gamma induces apoptosis and expression of inflammation-related proteins in Chang conjunctival cells. De Saint Jean M; Brignole F; Feldmann G; Goguel A; Baudouin C Invest Ophthalmol Vis Sci; 1999 Sep; 40(10):2199-212. PubMed ID: 10476784 [TBL] [Abstract][Full Text] [Related]
27. A potential role for 6-sulfo sialyl Lewis X in metastasis of bladder urothelial carcinoma. Taga M; Hoshino H; Low S; Imamura Y; Ito H; Yokoyama O; Kobayashi M Urol Oncol; 2015 Nov; 33(11):496.e1-9. PubMed ID: 26137907 [TBL] [Abstract][Full Text] [Related]
28. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. Albacker LA; Wu J; Smith P; Warmuth M; Stephens PJ; Zhu P; Yu L; Chmielecki J PLoS One; 2017; 12(11):e0176181. PubMed ID: 29121062 [TBL] [Abstract][Full Text] [Related]
29. Phospho‑STAT1 expression as a potential biomarker for anti‑PD‑1/anti‑PD‑L1 immunotherapy for breast cancer. Nakayama Y; Mimura K; Tamaki T; Shiraishi K; Kua LF; Koh V; Ohmori M; Kimura A; Inoue S; Okayama H; Suzuki Y; Nakazawa T; Ichikawa D; Kono K Int J Oncol; 2019 Jun; 54(6):2030-2038. PubMed ID: 31081058 [TBL] [Abstract][Full Text] [Related]
30. Interferon-γ promotes double-stranded RNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells. Gan H; Hao Q; Idell S; Tang H Am J Physiol Lung Cell Mol Physiol; 2016 Dec; 311(6):L1101-L1112. PubMed ID: 27793801 [TBL] [Abstract][Full Text] [Related]
31. Coexisting Alterations of MHC Class I Antigen Presentation and IFNγ Signaling Mediate Acquired Resistance of Melanoma to Post-PD-1 Immunotherapy. Nielsen M; Presti M; Sztupinszki Z; Jensen AWP; Draghi A; Chamberlain CA; Schina A; Yde CW; Wojcik J; Szallasi Z; Crowther MD; Svane IM; Donia M Cancer Immunol Res; 2022 Oct; 10(10):1254-1262. PubMed ID: 35969233 [TBL] [Abstract][Full Text] [Related]
32. Multicentric analytical comparability study of programmed death-ligand 1 expression on tumor-infiltrating immune cells and tumor cells in urothelial bladder cancer using four clinically developed immunohistochemistry assays. Schwamborn K; Ammann JU; Knüchel R; Hartmann A; Baretton G; Lasitschka F; Schirmacher P; Braunschweig T; Tauber R; Erlmeier F; Hieke-Schulz S; Weichert W Virchows Arch; 2019 Nov; 475(5):599-608. PubMed ID: 31267201 [TBL] [Abstract][Full Text] [Related]
35. The Urothelial Transcriptomic Response to Interferon Gamma: Implications for Bladder Cancer Prognosis and Immunotherapy. Baker SC; Mason AS; Slip RG; Eriksson P; Sjödahl G; Trejdosiewicz LK; Southgate J Cancers (Basel); 2022 Oct; 14(21):. PubMed ID: 36358715 [TBL] [Abstract][Full Text] [Related]
36. Concordance of PD-L1 expression in matched urothelial bladder cancer specimens. de Jong JJ; Stoop H; Nieboer D; Boormans JL; van Leenders GJLH Histopathology; 2018 Dec; 73(6):983-989. PubMed ID: 30003574 [TBL] [Abstract][Full Text] [Related]
37. miR-375 inhibits IFN-γ-induced programmed death 1 ligand 1 surface expression in head and neck squamous cell carcinoma cells by blocking JAK2/STAT1 signaling. Wu Q; Zhao Y; Sun Y; Yan X; Wang P Oncol Rep; 2018 Mar; 39(3):1461-1468. PubMed ID: 29328389 [TBL] [Abstract][Full Text] [Related]
38. Towards defining roles and relationships for tenascin-C and TGFbeta-1 in the normal and neoplastic urinary bladder. Booth C; Harnden P; Selby PJ; Southgate J J Pathol; 2002 Nov; 198(3):359-68. PubMed ID: 12375269 [TBL] [Abstract][Full Text] [Related]
39. ARID1A-deficiency in urothelial bladder cancer: No predictive biomarker for EZH2-inhibitor treatment response? Garczyk S; Schneider U; Lurje I; Becker K; Vögeli TA; Gaisa NT; Knüchel R PLoS One; 2018; 13(8):e0202965. PubMed ID: 30138427 [TBL] [Abstract][Full Text] [Related]
40. Programmed death ligand-1 is associated with tumor infiltrating lymphocytes and poorer survival in urothelial cell carcinoma of the bladder. Wang B; Pan W; Yang M; Yang W; He W; Chen X; Bi J; Jiang N; Huang J; Lin T Cancer Sci; 2019 Feb; 110(2):489-498. PubMed ID: 30548363 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]