BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 31552337)

  • 21. Wax Confinement with Carbon Nanotubes for Phase Changing Epoxy Blends.
    Fredi G; Dorigato A; Fambri L; Pegoretti A
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials.
    Liu S; Peng S; Zhang B; Xue B; Yang Z; Wang S; Xu G
    RSC Adv; 2022 Mar; 12(16):9587-9598. PubMed ID: 35424955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal Regulation Performance of Shape-Stabilized-Phase-Change-Material-Based Prefabricated Wall for Green Grain Storage.
    Zeng C; Hu C; Li W
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional Unit Construction for Heat Storage by Using Biomass-Based Composite.
    Su J; Weng M; Lu X; Xu W; Lyu S; Liu Y; Min Y
    Front Chem; 2022; 10():835455. PubMed ID: 35198540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and Reliability of Caprylic Acid-Stearyl Alcohol Binary Mixture as Phase Change Material for a Cold Energy Storage System.
    Ayaz H; Chinnasamy V; Cho H
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyethylene glycol/fumed silica composites as shape-stabilized phase change materials with effective thermal energy storage.
    Nguyen GT
    RSC Adv; 2023 Mar; 13(11):7621-7631. PubMed ID: 36908542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of Nanocomposites of a Phase Change Material Formed by the Dispersion of MWCNT/TiO
    AlOtaibi M; Alsuhybani M; Khayyat M; AlOtaibi B
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expanded vermiculite supported capric-palmitic acid composites for thermal energy storage.
    Bai R; Liu S; Han J; Wang M; Gao W; Wu D; Zhou M
    RSC Adv; 2023 Jun; 13(26):17516-17525. PubMed ID: 37304813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.
    Feng Y; Wei R; Huang Z; Zhang X; Wang G
    Phys Chem Chem Phys; 2018 Mar; 20(11):7772-7780. PubMed ID: 29503987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.
    Huang J; Lu S; Kong X; Liu S; Li Y
    Materials (Basel); 2013 Oct; 6(10):4758-4775. PubMed ID: 28788358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and Thermal Performance of Fatty Acid Binary Eutectic Mixture/Expanded Graphite Composites as Form-Stable Phase Change Materials for Thermal Energy Storage.
    Zhou D; Xiao S; Xiao X
    ACS Omega; 2023 Mar; 8(9):8596-8604. PubMed ID: 36910934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and characterization of form-stable phase change material/end-of-life tires composites for thermal energy storage.
    Konuklu Y
    Turk J Chem; 2020; 44(2):421-434. PubMed ID: 33488167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pore structure modified diatomite-supported PEG composites for thermal energy storage.
    Qian T; Li J; Deng Y
    Sci Rep; 2016 Sep; 6():32392. PubMed ID: 27580677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of a Sustainable Shape-Stabilized Phase Change Material for Thermal Energy Storage Based on Mg
    Zahir MH; Rahman MM; Basamad SKS; Mohaisen KO; Irshad K; Rahman MM; Aziz MA; Ali A; Hossain MM
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Carbohydr Polym; 2021 Dec; 273():118585. PubMed ID: 34560986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and Properties of Shape-Stabilized Phase Change Materials Based on Poly(triallyl isocyanurate-silicone)/
    Chen X; Huang X; Shi TY; Wang JX; Yuan XR; Huang H; Wang J; He R; Yu XF
    ACS Omega; 2022 May; 7(17):14952-14960. PubMed ID: 35557688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal and Mechanical Properties of Expanded Graphite/Paraffin Gypsum-Based Composite Material Reinforced by Carbon Fiber.
    Zhang B; Tian Y; Jin X; Lo TY; Cui H
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30405038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous Dual-Scale Interpenetrating Network Carbon Foam-Stearic Acid Composite as a Shape-Stabilized Phase Change Material with a Desirable Synergistic Effect.
    Wu R; Mei W; Zhou Y; Bi T; Lin Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37120-37133. PubMed ID: 35930699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multielement Synergetic Effect of Boron Nitride and Multiwalled Carbon Nanotubes for the Fabrication of Novel Shape-Stabilized Phase-Change Composites with Enhanced Thermal Conductivity.
    Xia Y; Li Q; Ji R; Zhang H; Xu F; Huang P; Zou Y; Chu H; Lin X; Sun L
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41398-41409. PubMed ID: 32820892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications.
    Mitran RA; Ioniţǎ S; Lincu D; Berger D; Matei C
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33466451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.