BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31552418)

  • 1. Signatures of cell death and proliferation in perturbation transcriptomics data-from confounding factor to effective prediction.
    Szalai B; Subramanian V; Holland CH; Alföldi R; Puskás LG; Saez-Rodriguez J
    Nucleic Acids Res; 2019 Nov; 47(19):10010-10026. PubMed ID: 31552418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compound signature detection on LINCS L1000 big data.
    Liu C; Su J; Yang F; Wei K; Ma J; Zhou X
    Mol Biosyst; 2015 Mar; 11(3):714-22. PubMed ID: 25609570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug-induced cell viability prediction from LINCS-L1000 through WRFEN-XGBoost algorithm.
    Lu J; Chen M; Qin Y
    BMC Bioinformatics; 2021 Jan; 22(1):13. PubMed ID: 33407085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic exploration of cell morphological phenotypes associated with a transcriptomic query.
    Nassiri I; McCall MN
    Nucleic Acids Res; 2018 Nov; 46(19):e116. PubMed ID: 30011038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prediction of drug-induced cell viability by SAE-XGBoost algorithm based on LINCS-L1000 perturbation signal].
    Lu J; Chen M; Qin Y; Yu X
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1346-1359. PubMed ID: 33973447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SigMat: a classification scheme for gene signature matching.
    Xiao J; Blatti C; Sinha S
    Bioinformatics; 2018 Jul; 34(13):i547-i554. PubMed ID: 29950002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug and disease signature integration identifies synergistic combinations in glioblastoma.
    Stathias V; Jermakowicz AM; Maloof ME; Forlin M; Walters W; Suter RK; Durante MA; Williams SL; Harbour JW; Volmar CH; Lyons NJ; Wahlestedt C; Graham RM; Ivan ME; Komotar RJ; Sarkaria JN; Subramanian A; Golub TR; Schürer SC; Ayad NG
    Nat Commun; 2018 Dec; 9(1):5315. PubMed ID: 30552330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking chemicals, genes and morphological perturbations to diseases.
    Cerisier N; Dafniet B; Badel A; Taboureau O
    Toxicol Appl Pharmacol; 2023 Feb; 461():116407. PubMed ID: 36736439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asynchronous and pathological windows of implantation: two causes of recurrent implantation failure.
    Sebastian-Leon P; Garrido N; Remohí J; Pellicer A; Diaz-Gimeno P
    Hum Reprod; 2018 Apr; 33(4):626-635. PubMed ID: 29452422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Getting Started with LINCS Datasets and Tools.
    Xie Z; Kropiwnicki E; Wojciechowicz ML; Jagodnik KM; Shu I; Bailey A; Clarke DJB; Jeon M; Evangelista JE; V Kuleshov M; Lachmann A; Parigi AA; Sanchez JM; Jenkins SL; Ma'ayan A
    Curr Protoc; 2022 Jul; 2(7):e487. PubMed ID: 35876555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting mechanism of action of novel compounds using compound structure and transcriptomic signature coembedding.
    Jang G; Park S; Lee S; Kim S; Park S; Kang J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i376-i382. PubMed ID: 34252937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional Characterization of Compounds: Lessons Learned from the Public LINCS Data.
    De Wolf H; De Bondt A; Turner H; Göhlmann HW
    Assay Drug Dev Technol; 2016 May; 14(4):252-60. PubMed ID: 27187605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigating Transcriptomic Connectivity Mapping Workflows to Link Chemicals with Bioactivities.
    Shah I; Bundy J; Chambers B; Everett LJ; Haggard D; Harrill J; Judson RS; Nyffeler J; Patlewicz G
    Chem Res Toxicol; 2022 Nov; 35(11):1929-1949. PubMed ID: 36301716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Scale Signatures of Gene Interaction from Compound Screens Predict Clinical Efficacy of Targeted Cancer Therapies.
    Jiang P; Lee W; Li X; Johnson C; Liu JS; Brown M; Aster JC; Liu XS
    Cell Syst; 2018 Mar; 6(3):343-354.e5. PubMed ID: 29428415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug Signature Detection Based on L1000 Genomic and Proteomic Big Data.
    Chen W; Zhou X
    Methods Mol Biol; 2019; 1939():273-286. PubMed ID: 30848467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SaVanT: a web-based tool for the sample-level visualization of molecular signatures in gene expression profiles.
    Lopez D; Montoya D; Ambrose M; Lam L; Briscoe L; Adams C; Modlin RL; Pellegrini M
    BMC Genomics; 2017 Oct; 18(1):824. PubMed ID: 29070035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L1000FWD: fireworks visualization of drug-induced transcriptomic signatures.
    Wang Z; Lachmann A; Keenan AB; Ma'ayan A
    Bioinformatics; 2018 Jun; 34(12):2150-2152. PubMed ID: 29420694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery.
    Wang Y; Yella J; Jegga AG
    Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures.
    Duan Q; Flynn C; Niepel M; Hafner M; Muhlich JL; Fernandez NF; Rouillard AD; Tan CM; Chen EY; Golub TR; Sorger PK; Subramanian A; Ma'ayan A
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W449-60. PubMed ID: 24906883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of transcriptomics based hypoxia signatures in head- and neck squamous cell carcinoma.
    Tawk B; Schwager C; Deffaa O; Dyckhoff G; Warta R; Linge A; Krause M; Weichert W; Baumann M; Herold-Mende C; Debus J; Abdollahi A
    Radiother Oncol; 2016 Feb; 118(2):350-8. PubMed ID: 26711490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.