These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31552424)

  • 41. Computational discovery of soybean promoter cis-regulatory elements for the construction of soybean cyst nematode-inducible synthetic promoters.
    Liu W; Mazarei M; Peng Y; Fethe MH; Rudis MR; Lin J; Millwood RJ; Arelli PR; Stewart CN
    Plant Biotechnol J; 2014 Oct; 12(8):1015-26. PubMed ID: 24893752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae.
    Wang J; Zhai H; Rexida R; Shen Y; Hou J; Bao X
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30203049
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of a Panel of Strong Constitutive Promoters from Streptococcus thermophilus for Fine-Tuning Gene Expression.
    Kong LH; Xiong ZQ; Song X; Xia YJ; Zhang N; Ai LZ
    ACS Synth Biol; 2019 Jun; 8(6):1469-1472. PubMed ID: 31117359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthetic promoters functional in Francisella novicida and Escherichia coli.
    McWhinnie RL; Nano FE
    Appl Environ Microbiol; 2014 Jan; 80(1):226-34. PubMed ID: 24141126
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of coliphage T3 and T7 RNA polymerases by the lac repressor-operator system.
    Giordano TJ; Deuschle U; Bujard H; McAllister WT
    Gene; 1989 Dec; 84(2):209-19. PubMed ID: 2693210
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An operator-based expression toolkit for
    Fu G; Yue J; Li D; Li Y; Lee SY; Zhang D
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2119980119. PubMed ID: 35263224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A library of synthetic transcription activator-like effector-activated promoters for coordinated orthogonal gene expression in plants.
    Brückner K; Schäfer P; Weber E; Grützner R; Marillonnet S; Tissier A
    Plant J; 2015 May; 82(4):707-16. PubMed ID: 25846505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli.
    Wang CY; Lempp M; Farke N; Donati S; Glatter T; Link H
    Nat Commun; 2021 Aug; 12(1):4929. PubMed ID: 34389727
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator.
    Hidalgo E; Leautaud V; Demple B
    EMBO J; 1998 May; 17(9):2629-36. PubMed ID: 9564045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering transcriptional regulation in Escherichia coli using an archaeal TetR-family transcription factor.
    Sybers D; Joka Bernauw A; El Masri D; Ramadan Maklad H; Charlier D; De Mey M; Bervoets I; Peeters E
    Gene; 2022 Jan; 809():146010. PubMed ID: 34688814
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering an allosteric transcription factor to respond to new ligands.
    Taylor ND; Garruss AS; Moretti R; Chan S; Arbing MA; Cascio D; Rogers JK; Isaacs FJ; Kosuri S; Baker D; Fields S; Church GM; Raman S
    Nat Methods; 2016 Feb; 13(2):177-83. PubMed ID: 26689263
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Programming gene expression with combinatorial promoters.
    Cox RS; Surette MG; Elowitz MB
    Mol Syst Biol; 2007; 3():145. PubMed ID: 18004278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Programming the Dynamic Control of Bacterial Gene Expression with a Chimeric Ligand- and Light-Based Promoter System.
    Jayaraman P; Yeoh JW; Zhang J; Poh CL
    ACS Synth Biol; 2018 Nov; 7(11):2627-2639. PubMed ID: 30359530
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-input regulation and logic with T7 promoters in cells and cell-free systems.
    Iyer S; Karig DK; Norred SE; Simpson ML; Doktycz MJ
    PLoS One; 2013; 8(10):e78442. PubMed ID: 24194933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. De novo design of the global transcriptional factor Cra-regulated promoters enables highly sensitive glycolysis flux biosensor for dynamic metabolic control.
    Zhu Y; Gao H; Zhang J; Zhao J; Qi Q; Wang Q
    Microb Biotechnol; 2023 Mar; 16(3):605-617. PubMed ID: 36541030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineered promoters enable constant gene expression at any copy number in bacteria.
    Segall-Shapiro TH; Sontag ED; Voigt CA
    Nat Biotechnol; 2018 Apr; 36(4):352-358. PubMed ID: 29553576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants.
    Xu L; Liu P; Dai Z; Fan F; Zhang X
    Microb Cell Fact; 2021 Jul; 20(1):148. PubMed ID: 34320991
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Promoter knock-in: a novel rational method for the fine tuning of genes.
    De Mey M; Maertens J; Boogmans S; Soetaert WK; Vandamme EJ; Cunin R; Foulquié-Moreno MR
    BMC Biotechnol; 2010 Mar; 10():26. PubMed ID: 20334648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.