These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 31552471)

  • 1. Metabolic reprogramming in osteoclasts.
    Park-Min KH
    Semin Immunopathol; 2019 Sep; 41(5):565-572. PubMed ID: 31552471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism.
    Kim H; Oh B; Park-Min KH
    Cells; 2021 Jan; 10(1):. PubMed ID: 33430327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of functional reprogramming during osteoclast development using quantitative proteomics and mRNA profiling.
    An E; Narayanan M; Manes NP; Nita-Lazar A
    Mol Cell Proteomics; 2014 Oct; 13(10):2687-704. PubMed ID: 25044017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic reprogramming of osteoclasts represents a therapeutic target during the treatment of osteoporosis.
    Taubmann J; Krishnacoumar B; Böhm C; Faas M; Müller DIH; Adam S; Stoll C; Böttcher M; Mougiakakos D; Sonnewald U; Hofmann J; Schett G; Krönke G; Scholtysek C
    Sci Rep; 2020 Dec; 10(1):21020. PubMed ID: 33273570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis.
    Da W; Tao L; Zhu Y
    Front Endocrinol (Lausanne); 2021; 12():675385. PubMed ID: 34054735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy metabolism in osteoclast formation and activity.
    Lemma S; Sboarina M; Porporato PE; Zini N; Sonveaux P; Di Pompo G; Baldini N; Avnet S
    Int J Biochem Cell Biol; 2016 Oct; 79():168-180. PubMed ID: 27590854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention.
    Kupisiewicz K
    Dan Med Bull; 2011 May; 58(5):B4277. PubMed ID: 21535989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose metabolism in bone.
    Karner CM; Long F
    Bone; 2018 Oct; 115():2-7. PubMed ID: 28843700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From macrophage to osteoclast - How metabolism determines function and activity.
    Kubatzky KF; Uhle F; Eigenbrod T
    Cytokine; 2018 Dec; 112():102-115. PubMed ID: 29914791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases.
    Agidigbi TS; Kim C
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic regulation of osteoclast differentiation and function.
    Indo Y; Takeshita S; Ishii KA; Hoshii T; Aburatani H; Hirao A; Ikeda K
    J Bone Miner Res; 2013 Nov; 28(11):2392-9. PubMed ID: 23661628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative NF-κB Regulates RANKL-Induced Osteoclast Differentiation and Mitochondrial Biogenesis via Independent Mechanisms.
    Zeng R; Faccio R; Novack DV
    J Bone Miner Res; 2015 Dec; 30(12):2287-99. PubMed ID: 26094846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone.
    Sims SM; Panupinthu N; Lapierre DM; Pereverzev A; Dixon SJ
    Biochim Biophys Acta; 2013 Jan; 1831(1):109-16. PubMed ID: 22892679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss.
    Lucas S; Omata Y; Hofmann J; Böttcher M; Iljazovic A; Sarter K; Albrecht O; Schulz O; Krishnacoumar B; Krönke G; Herrmann M; Mougiakakos D; Strowig T; Schett G; Zaiss MM
    Nat Commun; 2018 Jan; 9(1):55. PubMed ID: 29302038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation.
    Li B; Lee WC; Song C; Ye L; Abel ED; Long F
    FASEB J; 2020 Aug; 34(8):11058-11067. PubMed ID: 32627870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of osteoclast function via Rho-Pkn3-c-Src pathways.
    Uehara S; Udagawa N; Kobayashi Y
    J Oral Biosci; 2019 Sep; 61(3):135-140. PubMed ID: 31400545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folliculin Regulates Osteoclastogenesis Through Metabolic Regulation.
    Baba M; Endoh M; Ma W; Toyama H; Hirayama A; Nishikawa K; Takubo K; Hano H; Hasumi H; Umemoto T; Hashimoto M; Irie N; Esumi C; Kataoka M; Nakagata N; Soga T; Yao M; Kamba T; Minami T; Ishii M; Suda T
    J Bone Miner Res; 2018 Oct; 33(10):1785-1798. PubMed ID: 29893999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone Imaging: Osteoclast and Osteoblast Dynamics.
    Kikuta J; Ishii M
    Methods Mol Biol; 2018; 1763():1-9. PubMed ID: 29476483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA synthesis is not necessary for osteoclastic responses to parathyroid hormone in cultured fetal rat long bones.
    Lorenzo JA; Raisz LG; Hock JM
    J Clin Invest; 1983 Dec; 72(6):1924-9. PubMed ID: 6643680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone remodeling and the osteoclast.
    Teitelbaum SL
    J Bone Miner Res; 1993 Dec; 8 Suppl 2():S523-5. PubMed ID: 8122522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.