These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 31552478)
1. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Janeeshma E; Puthur JT Arch Microbiol; 2020 Jan; 202(1):1-16. PubMed ID: 31552478 [TBL] [Abstract][Full Text] [Related]
2. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Göhre V; Paszkowski U Planta; 2006 May; 223(6):1115-22. PubMed ID: 16555102 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Audet P; Charest C Environ Pollut; 2007 Jun; 147(3):609-14. PubMed ID: 17118259 [TBL] [Abstract][Full Text] [Related]
4. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Miransari M Biotechnol Adv; 2011; 29(6):645-53. PubMed ID: 21557996 [TBL] [Abstract][Full Text] [Related]
5. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. Wang G; Wang L; Ma F; You Y; Wang Y; Yang D J Hazard Mater; 2020 May; 389():121873. PubMed ID: 31862351 [TBL] [Abstract][Full Text] [Related]
6. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Ren CG; Kong CC; Wang SX; Xie ZH Chemosphere; 2019 Feb; 217():773-779. PubMed ID: 30448757 [TBL] [Abstract][Full Text] [Related]
7. New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance. Lacercat-Didier L; Berthelot C; Foulon J; Errard A; Martino E; Chalot M; Blaudez D Mycorrhiza; 2016 Oct; 26(7):657-71. PubMed ID: 27113586 [TBL] [Abstract][Full Text] [Related]
8. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Jankong P; Visoottiviseth P Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218 [TBL] [Abstract][Full Text] [Related]
9. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
10. Arbuscular mycorrhiza and heavy metal tolerance. Hildebrandt U; Regvar M; Bothe H Phytochemistry; 2007 Jan; 68(1):139-46. PubMed ID: 17078985 [TBL] [Abstract][Full Text] [Related]
11. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. Phieler R; Voit A; Kothe E Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709 [TBL] [Abstract][Full Text] [Related]
12. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Rajtor M; Piotrowska-Seget Z Chemosphere; 2016 Nov; 162():105-16. PubMed ID: 27487095 [TBL] [Abstract][Full Text] [Related]
13. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
14. The mechanism of arbuscular mycorrhizal fungi-alleviated manganese toxicity in plants: A review. Xu FQ; Meng LL; Kuča K; Wu QS Plant Physiol Biochem; 2024 Aug; 213():108808. PubMed ID: 38865805 [TBL] [Abstract][Full Text] [Related]
15. Earthworms and mycorrhization increase copper phytoextraction by Canavalia ensiformis in sandy soil. Santana NA; Ferreira PAA; Tarouco CP; Schardong IS; Antoniolli ZI; Nicoloso FT; Jacques RJS Ecotoxicol Environ Saf; 2019 Oct; 182():109383. PubMed ID: 31260919 [TBL] [Abstract][Full Text] [Related]
16. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Riaz M; Kamran M; Fang Y; Wang Q; Cao H; Yang G; Deng L; Wang Y; Zhou Y; Anastopoulos I; Wang X J Hazard Mater; 2021 Jan; 402():123919. PubMed ID: 33254825 [TBL] [Abstract][Full Text] [Related]
17. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Carrasco L; Azcón R; Kohler J; Roldán A; Caravaca F Sci Total Environ; 2011 Feb; 409(6):1205-9. PubMed ID: 21211827 [TBL] [Abstract][Full Text] [Related]
18. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. Cabral L; Soares CR; Giachini AJ; Siqueira JO World J Microbiol Biotechnol; 2015 Nov; 31(11):1655-64. PubMed ID: 26250548 [TBL] [Abstract][Full Text] [Related]
19. Uptake and Intraradical Immobilization of Cadmium by Arbuscular Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron Radiation μX-Ray Fluorescence Analysis. Chen B; Nayuki K; Kuga Y; Zhang X; Wu S; Ohtomo R Microbes Environ; 2018 Sep; 33(3):257-263. PubMed ID: 30122692 [TBL] [Abstract][Full Text] [Related]
20. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Andrade SA; Gratão PL; Schiavinato MA; Silveira AP; Azevedo RA; Mazzafera P Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]