BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31552622)

  • 21. Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification.
    Shannon-Lowe C; Adland E; Bell AI; Delecluse HJ; Rickinson AB; Rowe M
    J Virol; 2009 Aug; 83(15):7749-60. PubMed ID: 19439479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Either ZEB1 or ZEB2/SIP1 can play a central role in regulating the Epstein-Barr virus latent-lytic switch in a cell-type-specific manner.
    Ellis AL; Wang Z; Yu X; Mertz JE
    J Virol; 2010 Jun; 84(12):6139-52. PubMed ID: 20375168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells.
    Van Sciver N; Ohashi M; Pauly NP; Bristol JA; Nelson SE; Johannsen EC; Kenney SC
    PLoS Pathog; 2021 Aug; 17(8):e1009783. PubMed ID: 34339458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional Epstein-Barr virus reservoir in plasma cells derived from infected peripheral blood memory B cells.
    Al Tabaa Y; Tuaillon E; Bollore K; Foulongne V; Petitjean G; Seigneurin JM; Duperray C; Desgranges C; Vendrell JP
    Blood; 2009 Jan; 113(3):604-11. PubMed ID: 18845794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection.
    Nandakumar A; Uwatoko F; Yamamoto M; Tomita K; Majima HJ; Akiba S; Koriyama C
    Tumour Biol; 2017 Jul; 39(7):1010428317717718. PubMed ID: 28675108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epstein-Barr virus induces global changes in cellular mRNA isoform usage that are important for the maintenance of latency.
    Homa NJ; Salinas R; Forte E; Robinson TJ; Garcia-Blanco MA; Luftig MA
    J Virol; 2013 Nov; 87(22):12291-301. PubMed ID: 24027308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular microRNAs 200b and 429 regulate the Epstein-Barr virus switch between latency and lytic replication.
    Ellis-Connell AL; Iempridee T; Xu I; Mertz JE
    J Virol; 2010 Oct; 84(19):10329-43. PubMed ID: 20668090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells.
    Van Sciver N; Ohashi M; Nawandar DM; Pauly NP; Lee D; Makielski KR; Bristol JA; Tsao SW; Lambert PF; Johannsen EC; Kenney SC
    PLoS Pathog; 2021 Nov; 17(11):e1010045. PubMed ID: 34748616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes.
    Ragoczy T; Heston L; Miller G
    J Virol; 1998 Oct; 72(10):7978-84. PubMed ID: 9733836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epstein-Barr virus (EBV) EB1/Zta protein provided in trans and competent for the activation of productive cycle genes does not activate the BZLF1 gene in the EBV genome.
    Le Roux F; Sergeant A; Corbo L
    J Gen Virol; 1996 Mar; 77 ( Pt 3)():501-9. PubMed ID: 8601788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and Cloning of a New Western Epstein-Barr Virus Strain That Efficiently Replicates in Primary B Cells.
    Delecluse S; Poirey R; Zeier M; Schnitzler P; Behrends U; Tsai MH; Delecluse HJ
    J Virol; 2020 May; 94(10):. PubMed ID: 32102884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of ARKL1 as a Negative Regulator of Epstein-Barr Virus Reactivation.
    Siddiqi UZ; Vaidya AS; Li X; Marcon E; Tsao SW; Greenblatt J; Frappier L
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31341047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lytic and Latent Genetic Diversity of the Epstein-Barr Virus Reveals Raji-Related Variants from Southeastern Brazil Associated with Recombination Markers.
    Alves PD; Rohan P; Hassan R; Abdelhay E
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IRF4 promotes Epstein-Barr virus activation in Burkitt's lymphoma cells.
    Gao Y; Wang L; Lei Z; Li J; Forrest JC; Liang X
    J Gen Virol; 2019 May; 100(5):851-862. PubMed ID: 30907723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle.
    Gradoville L; Kwa D; El-Guindy A; Miller G
    J Virol; 2002 Jun; 76(11):5612-26. PubMed ID: 11991990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells.
    Hergenhahn M; Soto U; Weninger A; Polack A; Hsu CH; Cheng AL; Rösl F
    Mol Carcinog; 2002 Mar; 33(3):137-45. PubMed ID: 11870879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a novel element involved in regulation of the lytic switch BZLF1 gene promoter of Epstein-Barr virus.
    Kraus RJ; Mirocha SJ; Stephany HM; Puchalski JR; Mertz JE
    J Virol; 2001 Jan; 75(2):867-77. PubMed ID: 11134300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of Epstein-Barr virus genes in EBV-associated gastric carcinomas.
    Luo B; Wang Y; Wang XF; Liang H; Yan LP; Huang BH; Zhao P
    World J Gastroenterol; 2005 Feb; 11(5):629-33. PubMed ID: 15655811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation.
    Murata T; Sugimoto A; Inagaki T; Yanagi Y; Watanabe T; Sato Y; Kimura H
    Viruses; 2021 Nov; 13(12):. PubMed ID: 34960613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas.
    Feng WH; Hong G; Delecluse HJ; Kenney SC
    J Virol; 2004 Feb; 78(4):1893-902. PubMed ID: 14747554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.