These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31552688)

  • 1. Marginalized maximum a posteriori estimation for the four-parameter logistic model under a mixture modelling framework.
    Meng X; Xu G; Zhang J; Tao J
    Br J Math Stat Psychol; 2020 Nov; 73 Suppl 1():51-82. PubMed ID: 31552688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixture-modelling-based Bayesian MH-RM algorithm for the multidimensional 4PLM.
    Guo S; Chen Y; Zheng C; Li G
    Br J Math Stat Psychol; 2023 Nov; 76(3):585-604. PubMed ID: 36733219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mixed Stochastic Approximation EM (MSAEM) Algorithm for the Estimation of the Four-Parameter Normal Ogive Model.
    Meng X; Xu G
    Psychometrika; 2023 Dec; 88(4):1407-1442. PubMed ID: 35648266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Bayesian Expectation-Maximization-Maximization for the 3PLM.
    Guo S; Zheng C
    Front Psychol; 2019; 10():1175. PubMed ID: 31214067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The robust estimation of examinee ability based on the four-parameter logistic model when guessing and carelessness responses exist.
    Jian X; Buyun D; Yuanping D
    PLoS One; 2021; 16(4):e0250268. PubMed ID: 33914784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme.
    Fu Z; Zhang S; Su YH; Shi N; Tao J
    Br J Math Stat Psychol; 2021 Nov; 74(3):427-464. PubMed ID: 34002857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter Logistic Model.
    Zhang J; Lu J; Du H; Zhang Z
    Front Psychol; 2020; 11():2121. PubMed ID: 33041882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity to initial values in full non-parametric maximum-likelihood estimation of the two-parameter logistic model.
    Nader IW; Tran US; Formann AK
    Br J Math Stat Psychol; 2011 May; 64(Pt 2):320-36. PubMed ID: 21492136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularized EM algorithm for sparse parameter estimation in nonlinear dynamic systems with application to gene regulatory network inference.
    Jia B; Wang X
    EURASIP J Bioinform Syst Biol; 2014; 2014(1):5. PubMed ID: 24708632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits.
    May RC; Ibrahim JG; Chu H
    Stat Med; 2011 Sep; 30(20):2551-61. PubMed ID: 21710558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaussian variational estimation for multidimensional item response theory.
    Cho AE; Wang C; Zhang X; Xu G
    Br J Math Stat Psychol; 2021 Jul; 74 Suppl 1():52-85. PubMed ID: 33064318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study.
    Roosa K; Luo R; Chowell G
    Math Biosci Eng; 2019 May; 16(5):4299-4313. PubMed ID: 31499663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general algorithm for error-in-variables regression modelling using Monte Carlo expectation maximization.
    Stoklosa J; Hwang WH; Warton DI
    PLoS One; 2023; 18(4):e0283798. PubMed ID: 37011065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Change point detection in Cox proportional hazards mixture cure model.
    Wang B; Li J; Wang X
    Stat Methods Med Res; 2021 Feb; 30(2):440-457. PubMed ID: 32970523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint state and parameter estimation of the hemodynamic model by particle smoother expectation maximization method.
    Aslan S; Cemgil AT; Akın A
    J Neural Eng; 2016 Aug; 13(4):046010. PubMed ID: 27265063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expectation-Maximization-Maximization: A Feasible MLE Algorithm for the Three-Parameter Logistic Model Based on a Mixture Modeling Reformulation.
    Zheng C; Meng X; Guo S; Liu Z
    Front Psychol; 2017; 8():2302. PubMed ID: 29354089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation.
    Depaoli S
    Psychol Methods; 2013 Jun; 18(2):186-219. PubMed ID: 23527607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the DINA model parameters using the No-U-Turn Sampler.
    da Silva MA; de Oliveira ESB; von Davier AA; Bazán JL
    Biom J; 2018 Mar; 60(2):352-368. PubMed ID: 29194715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the 4-Parameter Item Response Model: Bayesian Estimation and Application.
    Culpepper SA
    Psychometrika; 2016 Dec; 81(4):1142-1163. PubMed ID: 26400070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRUST-TECH-based expectation maximization for learning finite mixture models.
    Reddy CK; Chiang HD; Rajaratnam B
    IEEE Trans Pattern Anal Mach Intell; 2008 Jul; 30(7):1146-57. PubMed ID: 18550899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.