These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31553006)

  • 1. High-performance supercabatteries using graphite@diamond nano-needle capacitor electrodes and redox electrolytes.
    Yu S; Sankaran KJ; Korneychuk S; Verbeeck J; Haenen K; Jiang X; Yang N
    Nanoscale; 2019 Oct; 11(38):17939-17946. PubMed ID: 31553006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-high energy density supercapacitors using a nickel phosphide/nickel/titanium carbide nanocomposite capacitor electrode.
    Xu J; Yang N; Yu S; Schulte A; Schönherr H; Jiang X
    Nanoscale; 2020 Jul; 12(25):13618-13625. PubMed ID: 32558859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D 3C-SiC/Graphene Hybrid Nanolaminate Films for High-Performance Supercapacitors.
    Heuser S; Yang N; Hof F; Schulte A; Schönherr H; Jiang X
    Small; 2018 Nov; 14(45):e1801857. PubMed ID: 30307709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Performance of WO
    Morka TD; Ujihara M
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes.
    Shao R; Niu J; Liang J; Liu M; Zhang Z; Dou M; Huang Y; Wang F
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42797-42805. PubMed ID: 29168631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Anion Microbatteries: Towards Construction of a Hybrid Battery-Capacitor Device.
    Silambarasan K; Joseph J
    ChemSusChem; 2018 Sep; 11(18):3081-3086. PubMed ID: 30079986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range.
    Shabangoli Y; Rahmanifar MS; Noori A; El-Kady MF; Kaner RB; Mousavi MF
    ACS Nano; 2019 Nov; 13(11):12567-12576. PubMed ID: 31633927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Untapped Potential of Polymorph MoS
    Ali BA; Omar AMA; Khalil ASG; Allam NK
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33955-33965. PubMed ID: 31449384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors.
    Wang L; Mu G; Tian C; Sun L; Zhou W; Yu P; Yin J; Fu H
    ChemSusChem; 2013 May; 6(5):880-9. PubMed ID: 23606450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
    Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J
    Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Diamond Electrodes.
    Yang N; Jiang X
    Acc Chem Res; 2023 Jan; 56(2):117-127. PubMed ID: 36584242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur Doping: Unique Strategy To Improve the Supercapacitive Performance of Carbon Nano-onions.
    Mohapatra D; Dhakal G; Sayed MS; Subramanya B; Shim JJ; Parida S
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8040-8050. PubMed ID: 30714716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diamond-Based Supercapacitors: Realization and Properties.
    Gao F; Nebel CE
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28244-28254. PubMed ID: 26423120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutral pH Gel Electrolytes for V
    Qian A; Zhuo K; Karthick Kannan P; Chung CH
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34455-34463. PubMed ID: 27998151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co
    Zhang C; Wei J; Chen L; Tang S; Deng M; Du Y
    Nanoscale; 2017 Oct; 9(40):15423-15433. PubMed ID: 28975952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte.
    Chen YC; Lin LY
    J Colloid Interface Sci; 2019 Mar; 537():295-305. PubMed ID: 30448650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage.
    Chambers A; Prawer S; Ahnood A; Zhan H
    Front Chem; 2022; 10():924127. PubMed ID: 35668830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte.
    Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Supporting GaN Nanowires/Graphite Paper: Novel High-Performance Flexible Supercapacitor Electrodes.
    Wang S; Sun C; Shao Y; Wu Y; Zhang L; Hao X
    Small; 2017 Feb; 13(8):. PubMed ID: 27982526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D walking palm-like core-shell CoMoO
    Hussain I; Ali A; Lamiel C; Mohamed SG; Sahoo S; Shim JJ
    Dalton Trans; 2019 Mar; 48(12):3853-3861. PubMed ID: 30706928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.