BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31553036)

  • 1. Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation.
    Zhou R; Wang P; Guo Y; Dai X; Xiao S; Fang Z; Speight R; Thompson EW; Cullen PJ; Ostrikov KK
    Nanoscale; 2019 Nov; 11(41):19497-19505. PubMed ID: 31553036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium.
    Landolfo S; Politi H; Angelozzi D; Mannazzu I
    Biochim Biophys Acta; 2008 Jun; 1780(6):892-8. PubMed ID: 18395524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic antioxidant activity of size controllable chitosan-templated Prussian blue nanoparticle.
    Oh H; Lee JS; Sung D; Lee JH; Moh SH; Lim JM; Choi WI
    Nanomedicine (Lond); 2019 Oct; 14(19):2567-2578. PubMed ID: 31322485
    [No Abstract]   [Full Text] [Related]  

  • 4. Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer.
    Sun L; Li Q; Hou M; Gao Y; Yang R; Zhang L; Xu Z; Kang Y; Xue P
    Biomater Sci; 2018 Oct; 6(11):2881-2895. PubMed ID: 30192355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers.
    Zhang W; Hu S; Yin JJ; He W; Lu W; Ma M; Gu N; Zhang Y
    J Am Chem Soc; 2016 May; 138(18):5860-5. PubMed ID: 26918394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system.
    Pérez-Gallardo RV; Briones LS; Díaz-Pérez AL; Gutiérrez S; Rodríguez-Zavala JS; Campos-García J
    FEMS Yeast Res; 2013 Dec; 13(8):804-19. PubMed ID: 24028658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prussian Blue: A Nanozyme with Versatile Catalytic Properties.
    Estelrich J; Busquets MA
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34206067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae.
    Burphan T; Tatip S; Limcharoensuk T; Kangboonruang K; Boonchird C; Auesukaree C
    Sci Rep; 2018 Aug; 8(1):13069. PubMed ID: 30166576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel Oxide (NiO) Nanoparticles Induce Loss of Cell Viability in Yeast Mediated by Oxidative Stress.
    Sousa CA; Soares HMVM; Soares EV
    Chem Res Toxicol; 2018 Aug; 31(8):658-665. PubMed ID: 30043610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels.
    Takagi H; Taguchi J; Kaino T
    Yeast; 2016 Aug; 33(8):355-63. PubMed ID: 26833688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes.
    Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K
    J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles.
    Srikanth K; Pereira E; Duarte AC; Rao JV
    Protoplasma; 2016 May; 253(3):873-884. PubMed ID: 26115719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prussian Blue Nanozymes Prevent Anthracycline-Induced Liver Injury by Attenuating Oxidative Stress and Regulating Inflammation.
    Bai H; Kong F; Feng K; Zhang X; Dong H; Liu D; Ma M; Liu F; Gu N; Zhang Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42382-42395. PubMed ID: 34473471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol Induces Autophagy Regulated by Mitochondrial ROS in
    Jing H; Liu H; Zhang L; Gao J; Song H; Tan X
    J Microbiol Biotechnol; 2018 Dec; 28(12):1982-1991. PubMed ID: 30394045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing.
    Sahu A; Jeon J; Lee MS; Yang HS; Tae G
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111596. PubMed ID: 33321640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and
    Ng CT; Yong LQ; Hande MP; Ong CN; Yu LE; Bay BH; Baeg GH
    Int J Nanomedicine; 2017; 12():1621-1637. PubMed ID: 28280330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929).
    Siddiqui MA; Saquib Q; Ahamed M; Farshori NN; Ahmad J; Wahab R; Khan ST; Alhadlaq HA; Musarrat J; Al-Khedhairy AA; Pant AB
    Colloids Surf B Biointerfaces; 2015 Jan; 125():73-81. PubMed ID: 25437066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis.
    Zhang Y; Yin Y; Zhang W; Li H; Wang T; Yin H; Sun L; Su C; Zhang K; Xu H
    J Nanobiotechnology; 2021 May; 19(1):161. PubMed ID: 34059078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells.
    An Q; Sun C; Li D; Xu K; Guo J; Wang C
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13248-57. PubMed ID: 24199694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.