These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31553061)
21. Spatially distributed sequential stimulation reduces muscle fatigue during neuromuscular electrical stimulation. Sayenko DG; Popovic MR; Masani K Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3614-7. PubMed ID: 24110512 [TBL] [Abstract][Full Text] [Related]
22. Effects of electrical stimulation parameters on fatigue in skeletal muscle. Gorgey AS; Black CD; Elder CP; Dudley GA J Orthop Sports Phys Ther; 2009 Sep; 39(9):684-92. PubMed ID: 19721215 [TBL] [Abstract][Full Text] [Related]
23. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force. Bochkezanian V; Newton RU; Trajano GS; Vieira A; Pulverenti TS; Blazevich AJ BMC Neurol; 2017 May; 17(1):82. PubMed ID: 28464800 [TBL] [Abstract][Full Text] [Related]
24. Doublet electrical stimulation enhances torque production in people with spinal cord injury. Chang YJ; Shields RK Neurorehabil Neural Repair; 2011 Jun; 25(5):423-32. PubMed ID: 21304018 [TBL] [Abstract][Full Text] [Related]
25. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. Gorgey AS; Lai RE; Khalil RE; Rivers J; Cardozo C; Chen Q; Lesnefsky EJ J Appl Physiol (1985); 2021 Jul; 131(1):265-276. PubMed ID: 33982590 [TBL] [Abstract][Full Text] [Related]
26. Muscle Fatigue in Response to Electrical Stimulation Pattern and Frequency in Spinal Cord Injury. Qiu S; Draghici AE; Picard G; Taylor JA PM R; 2020 Jul; 12(7):699-705. PubMed ID: 31702873 [TBL] [Abstract][Full Text] [Related]
27. Mechanical and fatigue properties of wrist flexor muscles during repetitive contractions after cervical spinal cord injury. Cameron T; Calancie B Arch Phys Med Rehabil; 1995 Oct; 76(10):929-33. PubMed ID: 7487433 [TBL] [Abstract][Full Text] [Related]
28. Variability of the fatigue response of paralyzed skeletal muscle in relation to the time after spinal cord injury: mechanical and electrophysiological characteristics. Gaviria M; Ohanna F Eur J Appl Physiol Occup Physiol; 1999 Jul; 80(2):145-53. PubMed ID: 10408326 [TBL] [Abstract][Full Text] [Related]
29. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Dunkelberger N; Schearer EM; O'Malley MK Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251 [TBL] [Abstract][Full Text] [Related]
31. Repetetive hindlimb movement using intermittent adaptive neuromuscular electrical stimulation in an incomplete spinal cord injury rodent model. Fairchild MD; Kim SJ; Iarkov A; Abbas JJ; Jung R Exp Neurol; 2010 Jun; 223(2):623-33. PubMed ID: 20206164 [TBL] [Abstract][Full Text] [Related]
32. Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Carty A; McCormack K; Coughlan GF; Crowe L; Caulfield B Arch Phys Med Rehabil; 2012 May; 93(5):790-5. PubMed ID: 22444027 [TBL] [Abstract][Full Text] [Related]
33. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats. Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107 [TBL] [Abstract][Full Text] [Related]
34. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Erickson ML; Ryan TE; Backus D; McCully KK Muscle Nerve; 2017 May; 55(5):669-675. PubMed ID: 27576602 [TBL] [Abstract][Full Text] [Related]
35. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury. Ibitoye MO; Estigoni EH; Hamzaid NA; Wahab AK; Davis GM Sensors (Basel); 2014 Jul; 14(7):12598-622. PubMed ID: 25025551 [TBL] [Abstract][Full Text] [Related]
36. Blood flow and muscle fatigue in SCI individuals during electrical stimulation. Olive JL; Slade JM; Dudley GA; McCully KK J Appl Physiol (1985); 2003 Feb; 94(2):701-8. PubMed ID: 12391070 [TBL] [Abstract][Full Text] [Related]
37. Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle. Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA Phys Ther; 2006 Jun; 86(6):788-99. PubMed ID: 16737404 [TBL] [Abstract][Full Text] [Related]
38. Low-frequency fatigue in individuals with spinal cord injury. Mahoney E; Puetz TW; Dudley GA; McCully KK J Spinal Cord Med; 2007; 30(5):458-66. PubMed ID: 18092561 [TBL] [Abstract][Full Text] [Related]
39. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Gorgey AS; Timmons MK; Dolbow DR; Bengel J; Fugate-Laus KC; Michener LA; Gater DR Eur J Appl Physiol; 2016 Jun; 116(6):1231-44. PubMed ID: 27155846 [TBL] [Abstract][Full Text] [Related]
40. Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents. Kanchiku T; Kato Y; Suzuki H; Imajo Y; Yoshida Y; Moriya A; Taguchi T; Jung R J Spinal Cord Med; 2012 May; 35(3):162-9. PubMed ID: 22507026 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]