BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31553191)

  • 1. Mechanism Study of Bacteria Killed on Nanostructures.
    Liu T; Cui Q; Wu Q; Li X; Song K; Ge D; Guan S
    J Phys Chem B; 2019 Oct; 123(41):8686-8696. PubMed ID: 31553191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Wettability Is a Key Feature in the Mechano-Bactericidal Activity of Nanopillars.
    Valiei A; Lin N; McKay G; Nguyen D; Moraes C; Hill RJ; Tufenkji N
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27564-27574. PubMed ID: 35670568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Surface Topography and Cellular Biomechanics on Nanopillar-Induced Bactericidal Activity.
    Valiei A; Bryche JF; Canva M; Charette PG; Moraes C; Hill RJ; Tufenkji N
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):9614-9625. PubMed ID: 38378485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release.
    Jiang R; Yi Y; Hao L; Chen Y; Tian L; Dou H; Zhao J; Ming W; Ren L
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):60865-60877. PubMed ID: 34905683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured surface topographies have an effect on bactericidal activity.
    Wu S; Zuber F; Maniura-Weber K; Brugger J; Ren Q
    J Nanobiotechnology; 2018 Feb; 16(1):20. PubMed ID: 29490703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress.
    Jenkins J; Mantell J; Neal C; Gholinia A; Verkade P; Nobbs AH; Su B
    Nat Commun; 2020 Apr; 11(1):1626. PubMed ID: 32242015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into complex nanopillar-bacteria interactions: Roles of nanotopography and bacterial surface proteins.
    Ishak MI; Jenkins J; Kulkarni S; Keller TF; Briscoe WH; Nobbs AH; Su B
    J Colloid Interface Sci; 2021 Dec; 604():91-103. PubMed ID: 34265695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assay for the colonization ability of heterogeneous bacteria on controlled nanopillar structures.
    Jin L; Guo W; Xue P; Gao H; Zhao M; Zheng C; Zhang Y; Han D
    Nanotechnology; 2015 Feb; 26(5):055702. PubMed ID: 25581320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of the mechano-bactericidal mechanism of nanostructured surfaces with finite element simulation.
    Cui Q; Liu T; Li X; Zhao L; Wu Q; Wang X; Song K; Ge D
    Colloids Surf B Biointerfaces; 2021 Oct; 206():111929. PubMed ID: 34147928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces.
    Ivanova EP; Linklater DP; Werner M; Baulin VA; Xu X; Vrancken N; Rubanov S; Hanssen E; Wandiyanto J; Truong VK; Elbourne A; Maclaughlin S; Juodkazis S; Crawford RJ
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12598-12605. PubMed ID: 32457154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.
    Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ
    Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A static force model to analyze the nuclear deformation on cell adhesion to vertical nanostructures.
    Li N; Jin K; Chen T; Li X
    Soft Matter; 2022 Sep; 18(35):6638-6644. PubMed ID: 36004571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Based Design of Dual Bactericidal and Bacteria-Releasing Nanosurfaces.
    Salatto D; Huang Z; Benziger PT; Carrillo JY; Bajaj Y; Gauer A; Tsapatsaris L; Sumpter BG; Li R; Takenaka M; Yin W; Thanassi DG; Endoh M; Koga T
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3420-3432. PubMed ID: 36600562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and Migration Mechanisms.
    Beckwith KS; Ullmann S; Vinje J; Sikorski P
    Small; 2019 Oct; 15(43):e1902514. PubMed ID: 31464377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired nanopillar surface for switchable mechano-bactericidal and releasing actions.
    Yi Y; Jiang R; Liu Z; Dou H; Song L; Tian L; Ming W; Ren L; Zhao J
    J Hazard Mater; 2022 Jun; 432():128685. PubMed ID: 35338932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural and bioinspired nanostructured bactericidal surfaces.
    Tripathy A; Sen P; Su B; Briscoe WH
    Adv Colloid Interface Sci; 2017 Oct; 248():85-104. PubMed ID: 28780961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of size-dependent cell adhesion on nanostructured interfaces.
    Kuo CW; Chueh DY; Chen P
    J Nanobiotechnology; 2014 Dec; 12():54. PubMed ID: 25477150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The idiosyncratic self-cleaning cycle of bacteria on regularly arrayed mechano-bactericidal nanostructures.
    Nguyen DHK; Loebbe C; Linklater DP; Xu X; Vrancken N; Katkus T; Juodkazis S; Maclaughlin S; Baulin V; Crawford RJ; Ivanova EP
    Nanoscale; 2019 Sep; 11(35):16455-16462. PubMed ID: 31451827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographical nanostructures for physical sterilization.
    Cai Y; Bing W; Xu X; Zhang Y; Chen Z; Gu Z
    Drug Deliv Transl Res; 2021 Aug; 11(4):1376-1389. PubMed ID: 33543396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic Mechano-Bactericidal Nanopillars Require External Forces to Rapidly Kill Bacteria.
    Valiei A; Lin N; Bryche JF; McKay G; Canva M; Charette PG; Nguyen D; Moraes C; Tufenkji N
    Nano Lett; 2020 Aug; 20(8):5720-5727. PubMed ID: 32573246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.