These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31553230)
1. Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Galal TM; Al-Sodany YM; Al-Yasi HM Int J Phytoremediation; 2020; 22(4):373-382. PubMed ID: 31553230 [TBL] [Abstract][Full Text] [Related]
2. Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: A phytoremediation approach. Galal TM; Gharib FA; Ghazi SM; Mansour KH Int J Phytoremediation; 2017 Nov; 19(11):992-999. PubMed ID: 28323451 [TBL] [Abstract][Full Text] [Related]
3. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Galal TM; Gharib FA; Ghazi SM; Mansour KH Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Eid EM; Galal TM; Sewelam NA; Talha NI; Abdallah SM Environ Sci Pollut Res Int; 2020 Apr; 27(11):12138-12151. PubMed ID: 31984462 [TBL] [Abstract][Full Text] [Related]
5. The role of Cyperus alopecuroides Rottb. sedge in monitoring water pollution in contaminated wetlands in Egypt: a phytoremediation approach. Galal TM; Shedeed ZA; Gharib FA; Al-Yasi HM; Mansour KH Environ Sci Pollut Res Int; 2021 May; 28(18):23005-23016. PubMed ID: 33438123 [TBL] [Abstract][Full Text] [Related]
6. Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization. Farahat EA; Galal TM Environ Sci Pollut Res Int; 2018 Feb; 25(5):4214-4222. PubMed ID: 29177787 [TBL] [Abstract][Full Text] [Related]
7. Nutrient sequestration potential of water primrose Galal TM; Abu Alhmad MF; Al-Yasi HM Saudi J Biol Sci; 2021 Apr; 28(4):2438-2446. PubMed ID: 33935569 [TBL] [Abstract][Full Text] [Related]
8. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Galal TM; Eid EM; Dakhil MA; Hassan LM Int J Phytoremediation; 2018 Apr; 20(5):440-447. PubMed ID: 29053352 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis. Al-Homaidan AA; Al-Otaibi TG; El-Sheikh MA; Al-Ghanayem AA; Ameen F Environ Monit Assess; 2020 Feb; 192(3):202. PubMed ID: 32107648 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation Perspectives of Seven Aquatic Macrophytes for Removal of Heavy Metals from Polluted Drains in the Nile Delta of Egypt. Abdelaal M; Mashaly IA; Srour DS; Dakhil MA; El-Liethy MA; El-Keblawy A; El-Barougy RF; Halmy MWA; El-Sherbeny GA Biology (Basel); 2021 Jun; 10(6):. PubMed ID: 34203088 [TBL] [Abstract][Full Text] [Related]
11. Ecological studies on the macrohydrophytes in Egypt II. Ludwigia stolonifera (Guill. and Perr.) P.H. Raven. Abu-Ziada ME Pak J Biol Sci; 2007 Jun; 10(12):2025-38. PubMed ID: 19093443 [TBL] [Abstract][Full Text] [Related]
12. Temporal Potential of Phragmites australis as a Phytoremediator to Remove Ni and Pb from Water and Sediment in Lake Burullus, Egypt. Eid EM; Shaltout KH; Al-Sodany YM; Haroun SA; Galal TM; Ayed H; Khedher KM; Jensen K Bull Environ Contam Toxicol; 2021 Mar; 106(3):516-527. PubMed ID: 33547904 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
14. Metals uptake and translocation in salt marsh macrophytes, Porteresia sp. from Bangladesh coastal area. Hossain MB; Rakib MRJ; Jolly YN; Rahman M Sci Total Environ; 2021 Apr; 764():144637. PubMed ID: 33385646 [TBL] [Abstract][Full Text] [Related]
15. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Galal TM Environ Monit Assess; 2016 Jul; 188(7):434. PubMed ID: 27344559 [TBL] [Abstract][Full Text] [Related]
16. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899 [TBL] [Abstract][Full Text] [Related]
17. Heavy metals in wetland plants and soil of Lake Taihu, China. Yang H; Shen Z; Zhu S; Wang W Environ Toxicol Chem; 2008 Jan; 27(1):38-42. PubMed ID: 18092866 [TBL] [Abstract][Full Text] [Related]
18. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution. Polechońska L; Samecka-Cymerman A Environ Sci Pollut Res Int; 2016 Feb; 23(4):3469-80. PubMed ID: 26490926 [TBL] [Abstract][Full Text] [Related]
19. In situ phytoremediation characterization of heavy metals promoted by Hydrocotyle ranunculoides at Santa Bárbara stream, an anthropogenic polluted site in southern of Brazil. Demarco CF; Afonso TF; Pieniz S; Quadro MS; Camargo FAO; Andreazza R Environ Sci Pollut Res Int; 2018 Oct; 25(28):28312-28321. PubMed ID: 30083896 [TBL] [Abstract][Full Text] [Related]
20. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Galal TM; Farahat EA Environ Monit Assess; 2015 Nov; 187(11):701. PubMed ID: 26497561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]