These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31553452)

  • 1. Improving folding properties of computationally designed proteins.
    Bjerre B; Nissen J; Madsen M; Fahrig-Kamarauskaitė J; Norrild RK; Holm PC; Nordentoft MK; O'Shea C; Willemoës M; Johansson KE; Winther JR
    Protein Eng Des Sel; 2019 Dec; 32(3):145-151. PubMed ID: 31553452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Evolution-Based Approach to De Novo Protein Design.
    Brender JR; Shultis D; Khattak NA; Zhang Y
    Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing cooperativity into the designed protein Top7.
    Yadahalli S; Gosavi S
    Proteins; 2014 Mar; 82(3):364-74. PubMed ID: 23966061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring folding free energy landscapes using computational protein design.
    Kuhlman B; Baker D
    Curr Opin Struct Biol; 2004 Feb; 14(1):89-95. PubMed ID: 15102454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering more stable proteins.
    Kazlauskas R
    Chem Soc Rev; 2018 Dec; 47(24):9026-9045. PubMed ID: 30306986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coarse-grained approach to protein design: learning from design to understand folding.
    Coluzza I
    PLoS One; 2011; 6(7):e20853. PubMed ID: 21747930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet.
    Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O
    Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sibe: a computation tool to apply protein sequence statistics to predict folding and design in silico.
    Cheung NJ; Yu W
    BMC Bioinformatics; 2019 Sep; 20(1):455. PubMed ID: 31492097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greek key jellyroll protein motif design: expression and characterization of a first-generation molecule.
    Smith DD; Pratt KA; Sumner IG; Henneke CM
    Protein Eng; 1995 Jan; 8(1):13-20. PubMed ID: 7770447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design of a leucine-rich repeat protein with a predefined geometry.
    Rämisch S; Weininger U; Martinsson J; Akke M; André I
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17875-80. PubMed ID: 25427795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic procedures for protein design.
    Jaramillo A; Wernisch L; Hery S; Wodak SJ
    Comb Chem High Throughput Screen; 2001 Dec; 4(8):643-59. PubMed ID: 11812260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering proteins with tailored nanomechanical properties: a single molecule approach.
    Li H
    Org Biomol Chem; 2007 Nov; 5(21):3399-406. PubMed ID: 17943196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring local and non-local interactions for protein stability by structural motif engineering.
    Niggemann M; Steipe B
    J Mol Biol; 2000 Feb; 296(1):181-95. PubMed ID: 10656826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New strategies in protein design.
    Desjarlais JR; Handel TM
    Curr Opin Biotechnol; 1995 Aug; 6(4):460-6. PubMed ID: 7579657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SolubiS: Optimizing Protein Solubility by Minimal Point Mutations.
    van der Kant R; van Durme J; Rousseau F; Schymkowitz J
    Methods Mol Biol; 2019; 1873():317-333. PubMed ID: 30341620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Templates in protein de novo design.
    Tuchscherer G; Mutter M
    J Biotechnol; 1995 Jul; 41(2-3):197-210. PubMed ID: 7654350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution structure prediction of a circular permutation loop.
    Correia BE; Holmes MA; Huang PS; Strong RK; Schief WR
    Protein Sci; 2011 Nov; 20(11):1929-34. PubMed ID: 21898647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromatic residues engineered into the beta-turn nucleation site of ubiquitin lead to a complex folding landscape, non-native side-chain interactions, and kinetic traps.
    Rea AM; Simpson ER; Meldrum JK; Williams HE; Searle MS
    Biochemistry; 2008 Dec; 47(48):12910-22. PubMed ID: 18991391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.