These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31553474)

  • 1. How and when informative visit processes can bias inference when using electronic health records data for clinical research.
    Goldstein BA; Phelan M; Pagidipati NJ; Peskoe SB
    J Am Med Inform Assoc; 2019 Dec; 26(12):1609-1617. PubMed ID: 31553474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Informative presence bias in analyses of electronic health records-derived data: a cautionary note.
    Harton J; Mitra N; Hubbard RA
    J Am Med Inform Assoc; 2022 Jun; 29(7):1191-1199. PubMed ID: 35438796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Quantitative Bias Analysis Approach to Informative Presence Bias in Electronic Health Records.
    Zhang H; Clark AS; Hubbard RA
    Epidemiology; 2024 May; 35(3):349-358. PubMed ID: 38630509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification.
    Beesley LJ; Mukherjee B
    Biometrics; 2022 Mar; 78(1):214-226. PubMed ID: 33179768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Illustrating Informed Presence Bias in Electronic Health Records Data: How Patient Interactions with a Health System Can Impact Inference.
    Phelan M; Bhavsar NA; Goldstein BA
    EGEMS (Wash DC); 2017 Dec; 5(1):22. PubMed ID: 29930963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Nature of Informative Presence Bias in Analyses of Electronic Health Records.
    McGee G; Haneuse S; Coull BA; Weisskopf MG; Rotem RS
    Epidemiology; 2022 Jan; 33(1):105-113. PubMed ID: 34711733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Health Record Documentation Patterns of Recorded Primary Care Visits Focused on Complex Communication: A Qualitative Study.
    Prater L; Sanchez A; Modan G; Burgess J; Frier K; Richards N; Bose-Brill S
    Appl Clin Inform; 2019 Mar; 10(2):247-253. PubMed ID: 30970382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can the Use of Bayesian Analysis Methods Correct for Incompleteness in Electronic Health Records Diagnosis Data? Development of a Novel Method Using Simulated and Real-Life Clinical Data.
    Ford E; Rooney P; Hurley P; Oliver S; Bremner S; Cassell J
    Front Public Health; 2020; 8():54. PubMed ID: 32211363
    [No Abstract]   [Full Text] [Related]  

  • 9. Electronic Health Record's Effects on the Outpatient Office Visit and Clinical Education.
    Sandoval MB; Palumbo MV; Hart V
    J Innov Health Inform; 2017 Jan; 23(4):151. PubMed ID: 28346132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflation of type I error rates due to differential misclassification in EHR-derived outcomes: Empirical illustration using breast cancer recurrence.
    Chen Y; Wang J; Chubak J; Hubbard RA
    Pharmacoepidemiol Drug Saf; 2019 Feb; 28(2):264-268. PubMed ID: 30375122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An augmented estimation procedure for EHR-based association studies accounting for differential misclassification.
    Tong J; Huang J; Chubak J; Wang X; Moore JH; Hubbard RA; Chen Y
    J Am Med Inform Assoc; 2020 Feb; 27(2):244-253. PubMed ID: 31617899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling for Informed Presence Bias Due to the Number of Health Encounters in an Electronic Health Record.
    Goldstein BA; Bhavsar NA; Phelan M; Pencina MJ
    Am J Epidemiol; 2016 Dec; 184(11):847-855. PubMed ID: 27852603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yield and bias in defining a cohort study baseline from electronic health record data.
    Vassy JL; Ho YL; Honerlaw J; Cho K; Gaziano JM; Wilson PWF; Gagnon DR
    J Biomed Inform; 2018 Feb; 78():54-59. PubMed ID: 29305952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevalence estimation by joint use of big data and health survey: a demonstration study using electronic health records in New York city.
    Kim RS; Shankar V
    BMC Med Res Methodol; 2020 Apr; 20(1):77. PubMed ID: 32252642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAT: a Surrogate-Assisted Two-wave case boosting sampling method, with application to EHR-based association studies.
    Liu X; Chubak J; Hubbard RA; Chen Y
    J Am Med Inform Assoc; 2022 Apr; 29(5):918-927. PubMed ID: 34962283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opportunities and challenges for biomarker discovery using electronic health record data.
    Singhal P; Tan ALM; Drivas TG; Johnson KB; Ritchie MD; Beaulieu-Jones BK
    Trends Mol Med; 2023 Sep; 29(9):765-776. PubMed ID: 37474378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification.
    Beesley LJ; Mukherjee B
    Stat Med; 2022 Dec; 41(28):5501-5516. PubMed ID: 36131394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. National estimates of the impact of electronic health records on the workload of primary care physicians.
    Bae J; Encinosa WE
    BMC Health Serv Res; 2016 May; 16():172. PubMed ID: 27160147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-Driven Scheduling for Improving Patient Efficiency in Ophthalmology Clinics.
    Hribar MR; Huang AE; Goldstein IH; Reznick LG; Kuo A; Loh AR; Karr DJ; Wilson L; Chiang MF
    Ophthalmology; 2019 Mar; 126(3):347-354. PubMed ID: 30312629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of electronic health record systems by office-based pediatricians.
    Lehmann CU; O'Connor KG; Shorte VA; Johnson TD
    Pediatrics; 2015 Jan; 135(1):e7-15. PubMed ID: 25548325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.