These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31553687)

  • 1. A passive, camera-based head-tracking system for real-time, three-dimensional estimation of head position and orientation in rodents.
    Vanzella W; Grion N; Bertolini D; Perissinotto A; Gigante M; Zoccolan D
    J Neurophysiol; 2019 Dec; 122(6):2220-2242. PubMed ID: 31553687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory data fusion of pressure mattress and wireless inertial magnetic measurement units.
    Rihar A; Mihelj M; Kolar J; Pašič J; Munih M
    Med Biol Eng Comput; 2015 Feb; 53(2):123-35. PubMed ID: 25367736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional imaging in freely moving animals.
    Kerr JN; Nimmerjahn A
    Curr Opin Neurobiol; 2012 Feb; 22(1):45-53. PubMed ID: 22237048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated behavior analysis system for freely moving rodents using depth image.
    Wang Z; Mirbozorgi SA; Ghovanloo M
    Med Biol Eng Comput; 2018 Oct; 56(10):1807-1821. PubMed ID: 29560548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EthoLoop: automated closed-loop neuroethology in naturalistic environments.
    Nourizonoz A; Zimmermann R; Ho CLA; Pellat S; Ormen Y; Prévost-Solié C; Reymond G; Pifferi F; Aujard F; Herrel A; Huber D
    Nat Methods; 2020 Oct; 17(10):1052-1059. PubMed ID: 32994566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-angle, monocular head tracking using passive markers.
    Vagvolgyi BP; Jayakumar RP; Madhav MS; Knierim JJ; Cowan NJ
    J Neurosci Methods; 2022 Feb; 368():109453. PubMed ID: 34968626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images.
    Weon C; Hyun Nam W; Lee D; Lee JY; Ra JB
    Med Phys; 2015 Jan; 42(1):335-47. PubMed ID: 25563273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of gaze orientation under unrestrained head movements.
    Ronsse R; White O; Lefèvre P
    J Neurosci Methods; 2007 Jan; 159(1):158-69. PubMed ID: 16890993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless inertial measurement of head kinematics in freely-moving rats.
    Pasquet MO; Tihy M; Gourgeon A; Pompili MN; Godsil BP; Léna C; Dugué GP
    Sci Rep; 2016 Oct; 6():35689. PubMed ID: 27767085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory and cognitive neurophysiology in rats, Part 1: Controlled tactile stimulation and micro-ECoG recordings in freely moving animals.
    Dimitriadis G; Fransen AM; Maris E
    J Neurosci Methods; 2014 Jul; 232():63-73. PubMed ID: 24820913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An infrared range camera-based approach for three-dimensional locomotion tracking and pose reconstruction in a rodent.
    Ou-Yang TH; Tsai ML; Yen CT; Lin TT
    J Neurosci Methods; 2011 Sep; 201(1):116-23. PubMed ID: 21835202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised quantification of whisking and head movement in freely moving rodents.
    Perkon I; Kosir A; Itskov PM; Tasic J; Diamond ME
    J Neurophysiol; 2011 Apr; 105(4):1950-62. PubMed ID: 21307326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commutative Properties of Head Direction Cells during Locomotion in 3D: Are All Routes Equal?
    LaChance PA; Dumont JR; Ozel P; Marcroft JL; Taube JS
    J Neurosci; 2020 Apr; 40(15):3035-3051. PubMed ID: 32127493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anipose: A toolkit for robust markerless 3D pose estimation.
    Karashchuk P; Rupp KL; Dickinson ES; Walling-Bell S; Sanders E; Azim E; Brunton BW; Tuthill JC
    Cell Rep; 2021 Sep; 36(13):109730. PubMed ID: 34592148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional liver motion tracking using real-time two-dimensional MRI.
    Brix L; Ringgaard S; Sørensen TS; Poulsen PR
    Med Phys; 2014 Apr; 41(4):042302. PubMed ID: 24694152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking whisker and head movements in unrestrained behaving rodents.
    Knutsen PM; Derdikman D; Ahissar E
    J Neurophysiol; 2005 Apr; 93(4):2294-301. PubMed ID: 15563552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation and Evaluation of a 50 kHz, 28μs Motion-to-Pose Latency Head Tracking Instrument.
    Blate A; Whitton M; Singh M; Welch G; State A; Whitted T; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1970-1980. PubMed ID: 30843843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.