BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31553801)

  • 1. QSAR-Based Estimation of Species Sensitivity Distribution Parameters: An Exploratory Investigation.
    Hoondert RPJ; Oldenkamp R; de Zwart D; van de Meent D; Posthuma L
    Environ Toxicol Chem; 2019 Dec; 38(12):2764-2770. PubMed ID: 31553801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Chemical Toxicity in Saltwater Be Predicted from Toxicity in Freshwater? A Comprehensive Evaluation Using Species Sensitivity Distributions.
    Yanagihara M; Hiki K; Iwasaki Y
    Environ Toxicol Chem; 2022 Aug; 41(8):2021-2027. PubMed ID: 35502940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Freshwater Ecotoxicity of More Than 9000 Chemicals by Combining Different Levels of Available Measured Test Data with In Silico Predictions.
    Douziech M; Oginah SA; Golsteijn L; Hauschild MZ; Jolliet O; Owsianiak M; Posthuma L; Fantke P
    Environ Toxicol Chem; 2024 Jun; ():. PubMed ID: 38860654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Illustrating a Species Sensitivity Distribution for Nano- and Microplastic Particles Using Bayesian Hierarchical Modeling.
    Takeshita KM; Iwasaki Y; Sinclair TM; Hayashi TI; Naito W
    Environ Toxicol Chem; 2022 Apr; 41(4):954-960. PubMed ID: 35226391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving substance information in USEtox
    Saouter E; Aschberger K; Fantke P; Hauschild MZ; Bopp SK; Kienzler A; Paini A; Pant R; Secchi M; Sala S
    Environ Toxicol Chem; 2017 Dec; 36(12):3450-3462. PubMed ID: 28618056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals.
    Posthuma L; van Gils J; Zijp MC; van de Meent D; de Zwart D
    Environ Toxicol Chem; 2019 Apr; 38(4):905-917. PubMed ID: 30675920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean Species Abundance as a Measure of Ecotoxicological Risk.
    Hoeks S; Huijbregts MAJ; Douziech M; Hendriks AJ; Oldenkamp R
    Environ Toxicol Chem; 2020 Nov; 39(11):2304-2313. PubMed ID: 32786097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Assessment of the Sensitivity of Fish Early-Life Stage, Daphnia, and Algae Tests to the Chronic Ecotoxicity of Xenobiotics: Perspectives for Alternatives to Animal Testing.
    Teixidó E; Leuthold D; de Crozé N; Léonard M; Scholz S
    Environ Toxicol Chem; 2020 Jan; 39(1):30-41. PubMed ID: 31598995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and application of the SSD approach in scientific case studies for ecological risk assessment.
    Del Signore A; Hendriks AJ; Lenders HJ; Leuven RS; Breure AM
    Environ Toxicol Chem; 2016 Sep; 35(9):2149-61. PubMed ID: 27144499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving substance information in USEtox
    Saouter E; Aschberger K; Fantke P; Hauschild MZ; Kienzler A; Paini A; Pant R; Radovnikovic A; Secchi M; Sala S
    Environ Toxicol Chem; 2017 Dec; 36(12):3463-3470. PubMed ID: 28671290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions.
    Moore DR; Priest CD; Galic N; Brain RA; Rodney SI
    Integr Environ Assess Manag; 2020 Jan; 16(1):53-65. PubMed ID: 31433110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Which distribution to choose for deriving a species sensitivity distribution? Implications from analysis of acute and chronic ecotoxicity data.
    Yanagihara M; Hiki K; Iwasaki Y
    Ecotoxicol Environ Saf; 2024 Jun; 278():116379. PubMed ID: 38714082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages of model averaging of species sensitivity distributions used for regulating produced water discharges.
    Binet MT; Golding LA; Adams MS; Robertson T; Elsdon TS
    Integr Environ Assess Manag; 2024 Mar; 20(2):498-517. PubMed ID: 37466036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species Sensitivity Distribution estimation from uncertain (QSAR-based) effects data.
    Aldenberg T; Rorije E
    Altern Lab Anim; 2013 Mar; 41(1):19-31. PubMed ID: 23614542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models.
    Awkerman JA; Raimondo S; Jackson CR; Barron MG
    Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research Priorities for the Environmental Risk Assessment of Per- and Polyfluorinated Substances.
    Gkika IS; Xie G; van Gestel CAM; Ter Laak TL; Vonk JA; van Wezel AP; Kraak MHS
    Environ Toxicol Chem; 2023 Nov; 42(11):2302-2316. PubMed ID: 37589402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative structure-activity relationships approach to predict the toxicity of narcotic compounds to aquatic communities.
    Finizio A; Di Nica V; Rizzi C; Villa S
    Ecotoxicol Environ Saf; 2020 Mar; 190():110068. PubMed ID: 31841895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating the pace of ecotoxicological assessment using artificial intelligence.
    Song R; Li D; Chang A; Tao M; Qin Y; Keller AA; Suh S
    Ambio; 2022 Mar; 51(3):598-610. PubMed ID: 34427865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.