BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31553830)

  • 1. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut.
    Kumar R; Janila P; Vishwakarma MK; Khan AW; Manohar SS; Gangurde SS; Variath MT; Shasidhar Y; Pandey MK; Varshney RK
    Plant Biotechnol J; 2020 Apr; 18(4):992-1003. PubMed ID: 31553830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-genome sequencing based discovery of candidate genes and diagnostic markers for seed weight in groundnut.
    Gangurde SS; Khan AW; Janila P; Variath MT; Manohar SS; Singam P; Chitikineni A; Varshney RK; Pandey MK
    Plant Genome; 2023 Dec; 16(4):e20265. PubMed ID: 36478184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.).
    Pandey MK; Khan AW; Singh VK; Vishwakarma MK; Shasidhar Y; Kumar V; Garg V; Bhat RS; Chitikineni A; Janila P; Guo B; Varshney RK
    Plant Biotechnol J; 2017 Aug; 15(8):927-941. PubMed ID: 28028892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genetics and physiology of seed dormancy, a crucial trait in common bean domestication.
    Soltani A; Walter KA; Wiersma AT; Santiago JP; Quiqley M; Chitwood D; Porch TG; Miklas P; McClean PE; Osorno JM; Lowry DB
    BMC Plant Biol; 2021 Jan; 21(1):58. PubMed ID: 33482732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Genetic Map Identified Major QTLs for Drought Tolerance- and Iron Deficiency Tolerance-Related Traits in Groundnut.
    Pandey MK; Gangurde SS; Sharma V; Pattanashetti SK; Naidu GK; Faye I; Hamidou F; Desmae H; Kane NA; Yuan M; Vadez V; Nigam SN; Varshney RK
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-Mapping of a Wild Genomic Region Involved in Pod and Seed Size Reduction on Chromosome A07 in Peanut (
    Alyr MH; Pallu J; Sambou A; Nguepjop JR; Seye M; Tossim HA; Djiboune YR; Sane D; Rami JF; Fonceka D
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33255801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Quantitative Trait Loci and Candidate Genes Controlling Seed Dormancy in Eggplant (
    Ai J; Wang W; Hu T; Hu H; Wang J; Yan Y; Pang H; Wang Y; Bao C; Wei Q
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice (
    Yuan S; Wang Y; Zhang C; He H; Yu S
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32079255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea.
    Das S; Upadhyaya HD; Bajaj D; Kujur A; Badoni S; Laxmi ; Kumar V; Tripathi S; Gowda CL; Sharma S; Singh S; Tyagi AK; Parida SK
    DNA Res; 2015 Jun; 22(3):193-203. PubMed ID: 25922536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two genes encoding caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) are candidate genes for physical seed dormancy in cowpea (Vigna unguiculata (L.) Walp.).
    Laosatit K; Amkul K; Lin Y; Yuan X; Chen X; Somta P
    Theor Appl Genet; 2024 Jun; 137(7):146. PubMed ID: 38834825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of a Major-Effect Quantitative Trait Locus for Seed Dormancy in Wheat.
    Gao Y; Qiao L; Mei C; Nong L; Li Q; Zhang X; Li R; Gao W; Chen F; Chang L; Zhang S; Guo H; Cheng T; Wen H; Chang Z; Li X
    Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genetic analysis of a wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling.
    Somyong S; Munkvold JD; Tanaka J; Benscher D; Sorrells ME
    Funct Integr Genomics; 2011 Sep; 11(3):479-90. PubMed ID: 21468744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.).
    Zhang S; Hu X; Miao H; Chu Y; Cui F; Yang W; Wang C; Shen Y; Xu T; Zhao L; Zhang J; Chen J
    BMC Plant Biol; 2019 Dec; 19(1):537. PubMed ID: 31795931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.).
    Luo H; Pandey MK; Khan AW; Guo J; Wu B; Cai Y; Huang L; Zhou X; Chen Y; Chen W; Liu N; Lei Y; Liao B; Varshney RK; Jiang H
    Plant Biotechnol J; 2019 Jul; 17(7):1248-1260. PubMed ID: 30549165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Causal Gene for Seed Dormancy on Wheat Chromosome 4A Encodes a MAP Kinase Kinase.
    Torada A; Koike M; Ogawa T; Takenouchi Y; Tadamura K; Wu J; Matsumoto T; Kawaura K; Ogihara Y
    Curr Biol; 2016 Mar; 26(6):782-7. PubMed ID: 26948878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut.
    Wang Z; Yan L; Chen Y; Wang X; Huai D; Kang Y; Jiang H; Liu K; Lei Y; Liao B
    Theor Appl Genet; 2022 May; 135(5):1779-1795. PubMed ID: 35262768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice.
    Shi J; Shi J; Liang W; Zhang D
    Theor Appl Genet; 2021 Nov; 134(11):3553-3562. PubMed ID: 34312681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley.
    Gao W; Clancy JA; Han F; Prada D; Kleinhofs A; Ullrich SE
    Theor Appl Genet; 2003 Aug; 107(3):552-9. PubMed ID: 12736778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL.
    Barrero JM; Cavanagh C; Verbyla KL; Tibbits JF; Verbyla AP; Huang BE; Rosewarne GM; Stephen S; Wang P; Whan A; Rigault P; Hayden MJ; Gubler F
    Genome Biol; 2015 May; 16(1):93. PubMed ID: 25962727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic control of dormancy in a Triumph/Morex cross in barley.
    Prada D; Ullrich SE; Molina-Cano JL; Cistué L; Clancy JA; Romagosa I
    Theor Appl Genet; 2004 Jun; 109(1):62-70. PubMed ID: 14991108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.