These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31553880)

  • 1. Single-Molecule Topochemical Analyses for Large-Scale Multiplexing Tasks.
    Mandal S; Zhang X; Pandey S; Mao H
    Anal Chem; 2019 Nov; 91(21):13485-13493. PubMed ID: 31553880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Molecule Mechanochemical Sensing Using DNA Origami Nanostructures.
    Jonchhe S; Mao H
    Methods Mol Biol; 2019; 2027():171-180. PubMed ID: 31309481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Kinetic Fingerprinting for High-Accuracy Single-Molecule Counting of Diverse Disease Biomarkers.
    Mandal S; Li Z; Chatterjee T; Khanna K; Montoya K; Dai L; Petersen C; Li L; Tewari M; Johnson-Buck A; Walter NG
    Acc Chem Res; 2021 Jan; 54(2):388-402. PubMed ID: 33382587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule Mechanochemical Sensing.
    Hu C; Tahir R; Mao H
    Acc Chem Res; 2022 May; 55(9):1214-1225. PubMed ID: 35420417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and universal enzyme-free approach for the detection of multiple microRNAs using a single nanostructured enhancer of surface plasmon resonance imaging.
    Sguassero A; Artiga Á; Morasso C; Jimenez RR; Rapún RM; Mancuso R; Agostini S; Hernis A; Abols A; Linē A; Gualerzi A; Picciolini S; Bedoni M; Rovaris M; Gramatica F; de la Fuente JM; Vanna R
    Anal Bioanal Chem; 2019 Mar; 411(9):1873-1885. PubMed ID: 30155701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient Hybridization Directed Nanoflare for Single-Molecule miRNA Imaging.
    Li L; Yu Y; Wang C; Han Q; Su X
    Anal Chem; 2019 Sep; 91(17):11122-11128. PubMed ID: 31402644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex Conformational Dynamics of the Heart Failure-Associated Pre-miRNA-377 Hairpin Revealed by Single-Molecule Optical Tweezers.
    Wypijewska Del Nogal A; Sundar Rajan V; Westerlund F; Wilhelmsson LM
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-fueled catalytic hairpin assembly for sensitive and multiplex microRNA detection.
    Wang J; Sun Y; Lau C; Lu J
    Anal Bioanal Chem; 2020 May; 412(13):3019-3027. PubMed ID: 32232523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hairpin DNA-fueled nanoflare for simultaneous illumination of two microRNAs in drug-induced nephrotoxic cells with target catalytic recycling amplification.
    Gao H; Li J; Jia Y; Yu XA; Qi J; Tian J; Yu BY
    Analyst; 2019 Dec; 144(24):7178-7184. PubMed ID: 31647062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection microRNA.
    Liu H; Li L; Wang Q; Duan L; Tang B
    Anal Chem; 2014 Jun; 86(11):5487-93. PubMed ID: 24823448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An enzyme-free surface plasmon resonance imaging biosensing method for highly sensitive detection of microRNA based on catalytic hairpin assembly and spherical nucleic acid.
    Wei X; Liu D; Zhao M; Yang T; Fan Y; Chen W; Liu P; Li J; Ding S
    Anal Chim Acta; 2020 Apr; 1108():21-27. PubMed ID: 32222240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification.
    Liu H; Tian T; Zhang Y; Ding L; Yu J; Yan M
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):710-714. PubMed ID: 27865105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly.
    Chen J; Wu Y; Fu C; Cao H; Tan X; Shi W; Wu Z
    Biosens Bioelectron; 2019 Oct; 143():111619. PubMed ID: 31454694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colocalized Particle Counting Platform for Zeptomole Level Multiplexed Quantification.
    Tao G; Lai T; Xu X; Ma Y; Wu X; Pei X; Liu F; Li N
    Anal Chem; 2020 Mar; 92(5):3697-3706. PubMed ID: 32037812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid.
    Long X; Parks JW; Stone MD
    Methods; 2016 Aug; 105():16-25. PubMed ID: 27320203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative and specific detection of cancer-related microRNAs in living cells using surface-enhanced Raman scattering imaging based on hairpin DNA-functionalized gold nanocages.
    Wang Z; Xue J; Bi C; Xin H; Wang Y; Cao X
    Analyst; 2019 Dec; 144(24):7250-7262. PubMed ID: 31687670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of MicroRNA Detection on a Power-free Microfluidic Chip with Laminar Flow-assisted Dendritic Amplification.
    Hasegawa K; Negishi R; Matsumoto M; Yohda M; Hosokawa K; Maeda M
    Anal Sci; 2017; 33(2):171-177. PubMed ID: 28190836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling.
    Wilson H; Wang Q
    Nat Methods; 2021 Jul; 18(7):816-820. PubMed ID: 34127856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution.
    Pitchiaya S; Heinicke LA; Park JI; Cameron EL; Walter NG
    Cell Rep; 2017 Apr; 19(3):630-642. PubMed ID: 28423324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication.
    Kanak M; Alseiari M; Balasubramanian P; Addanki K; Aggarwal M; Noorali S; Kalsum A; Mahalingam K; Pace G; Panasik N; Bagasra O
    Appl Immunohistochem Mol Morphol; 2010 Dec; 18(6):532-45. PubMed ID: 20502318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.