BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31553892)

  • 1. Specific and sensitive detection of the guava fruit anthracnose pathogen (
    Lan C; Yao J; Yang X; Ruan H; Yu D; Jiang J
    Can J Microbiol; 2020 Jan; 66(1):17-24. PubMed ID: 31553892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Detection of QoI Resistance in
    Wu JY; Hu XR; Zhang CQ
    Plant Dis; 2019 Jun; 103(6):1319-1325. PubMed ID: 30998417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-genetic Analysis of
    Zhafarina S; Wibowo A; Widiastuti A
    Pak J Biol Sci; 2021 Jan; 24(1):53-65. PubMed ID: 33683031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and simple colorimetric detection of quiescent Colletotrichum in harvested fruit using reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) technology.
    Kaur M; Ayarnah K; Duanis-Assaf D; Alkan N; Eltzov E
    Talanta; 2023 Apr; 255():124251. PubMed ID: 36630787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic and molecular characterization of Colletotrichum species associated with anthracnose of banana (Musa spp) in Malaysia.
    Intan Sakinah MA; Suzianti IV; Latiffah Z
    Genet Mol Res; 2014 May; 13(2):3627-37. PubMed ID: 24854442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP.
    Chung WH; Chung WC; Peng MT; Yang HR; Huang JW
    N Biotechnol; 2010 Feb; 27(1):17-24. PubMed ID: 19854306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil.
    Bragança CAD; Damm U; Baroncelli R; Massola Júnior NS; Crous PW
    Fungal Biol; 2016 Apr; 120(4):547-561. PubMed ID: 27020156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymerase chain reaction assay for rapid, sensitive detection, and identification of Colletotrichum gloeosporioides causing greater yam anthracnose.
    Raj M; Jeeva M; Hegde V; Vidyadharan P; Archana P; Senthil alias Sankar M; Nath SV
    Mol Biotechnol; 2012 Nov; 52(3):277-84. PubMed ID: 22315088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of cross inoculation potential of South African avocado and mango isolates of Colletotrichum gloeosporioides.
    Sanders GM; Korsten L
    Microbiol Res; 2003; 158(2):143-50. PubMed ID: 12906387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCR-based detection and characterization of the fungal pathogens Colletotrichum gloeosporioides and Colletotrichum capsici causing anthracnose in papaya (Carica papaya l.) in the Yucatan peninsula.
    Tapia-Tussell R; Quijano-Ramayo A; Cortes-Velazquez A; Lappe P; Larque-Saavedra A; Perez-Brito D
    Mol Biotechnol; 2008 Nov; 40(3):293-8. PubMed ID: 18670909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loop-mediated isothermal amplification (LAMP) based detection of Colletotrichum falcatum causing red rot in sugarcane.
    Chandra A; Keizerweerd AT; Que Y; Grisham MP
    Mol Biol Rep; 2015 Aug; 42(8):1309-16. PubMed ID: 25861736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Potentially Probiotic Fruit-Derived Lactic Acid Bacteria Loaded into Sodium Alginate Coatings to Control Anthracnose Development in Guava and Mango During Storage.
    Fernandes KFD; de Oliveira KÁR; de Souza EL
    Probiotics Antimicrob Proteins; 2023 Jun; 15(3):573-587. PubMed ID: 34755278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato.
    Mahto BK; Singh A; Pareek M; Rajam MV; Dhar-Ray S; Reddy PM
    Plant Mol Biol; 2020 Nov; 104(4-5):381-395. PubMed ID: 32803478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic differentiation of Colletotrichum gloeosporioides and C. truncatum associated with Anthracnose disease of papaya (Carica papaya L.) and bell pepper (Capsium annuum L.) based on ITS PCR-RFLP fingerprinting.
    Maharaj A; Rampersad SN
    Mol Biotechnol; 2012 Mar; 50(3):237-49. PubMed ID: 21720933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper-based colorimetric loop-mediated isothermal amplification (LAMP) assay for the identification of latent Colletotrichum in harvested fruit.
    Kaur M; Ayarnah K; Duanis-Assaf D; Alkan N; Eltzov E
    Anal Chim Acta; 2023 Aug; 1267():341394. PubMed ID: 37257967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time PCR assay for Colletotrichum acutatum sensu stricto quantification in olive fruit samples.
    Azevedo-Nogueira F; Gomes S; Lino A; Carvalho T; Martins-Lopes P
    Food Chem; 2021 Mar; 339():127858. PubMed ID: 32829246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-specific real-time PCR detection of Colletotrichum kahawae.
    Tao G; Hyde KD; Cai L
    J Appl Microbiol; 2013 Mar; 114(3):828-35. PubMed ID: 23163978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Colletotrichum gloeosporioides in native cashew species in Brazil.
    Dos Santos GR; Chagas JFR; Rodrigues-Silva N; Sarmento RA; Leão EU; da Silva RS; Picanço MC
    Braz J Microbiol; 2019 Oct; 50(4):899-903. PubMed ID: 31435853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris - wilt pathogen of chickpea.
    Ghosh R; Nagavardhini A; Sengupta A; Sharma M
    BMC Res Notes; 2015 Feb; 8():40. PubMed ID: 25886622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose.
    Talhinhas P; Sreenivasaprasad S; Neves-Martins J; Oliveira H
    Appl Environ Microbiol; 2005 Jun; 71(6):2987-98. PubMed ID: 15932994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.