These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 31554114)
1. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Xie D; Dai W; Lu M; Tan J; Zhang Y; Chen M; Lin Z Food Res Int; 2019 Nov; 125():108635. PubMed ID: 31554114 [TBL] [Abstract][Full Text] [Related]
2. Metabolomics Investigation Reveals That 8-C N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols Are Potential Marker Compounds of Stored White Teas. Dai W; Tan J; Lu M; Zhu Y; Li P; Peng Q; Guo L; Zhang Y; Xie D; Hu Z; Lin Z J Agric Food Chem; 2018 Jul; 66(27):7209-7218. PubMed ID: 29921123 [TBL] [Abstract][Full Text] [Related]
3. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Yang C; Hu Z; Lu M; Li P; Tan J; Chen M; Lv H; Zhu Y; Zhang Y; Guo L; Peng Q; Dai W; Lin Z Food Res Int; 2018 Apr; 106():909-919. PubMed ID: 29580004 [TBL] [Abstract][Full Text] [Related]
4. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Dai W; Xie D; Lu M; Li P; Lv H; Yang C; Peng Q; Zhu Y; Guo L; Zhang Y; Tan J; Lin Z Food Res Int; 2017 Jun; 96():40-45. PubMed ID: 28528106 [TBL] [Abstract][Full Text] [Related]
5. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Lv HP; Zhang Y; Shi J; Lin Z Food Res Int; 2017 Oct; 100(Pt 3):486-493. PubMed ID: 28964372 [TBL] [Abstract][Full Text] [Related]
6. New insights into the influences of baking and storage on the nonvolatile compounds in oolong tea: A nontargeted and targeted metabolomics study. Peng J; Dai W; Lu M; Yan Y; Zhang Y; Chen D; Wu W; Gao J; Dong M; Lin Z Food Chem; 2022 May; 375():131872. PubMed ID: 34953237 [TBL] [Abstract][Full Text] [Related]
7. Metabolomics Analysis Reveals Four Novel Chen D; Zhao Y; Peng J; Zhang Y; Gao J; Wu W; Xie D; Hu Z; Lin Z; Dai W J Agric Food Chem; 2021 Nov; 69(46):14037-14047. PubMed ID: 34780189 [TBL] [Abstract][Full Text] [Related]
8. A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis). Dai W; Hu Z; Xie D; Tan J; Lin Z Food Chem; 2020 May; 311():126007. PubMed ID: 31855776 [TBL] [Abstract][Full Text] [Related]
9. Dai W; Lou N; Xie D; Hu Z; Song H; Lu M; Shang D; Wu W; Peng J; Yin P; Lin Z J Agric Food Chem; 2020 Oct; 68(43):12164-12172. PubMed ID: 33074673 [TBL] [Abstract][Full Text] [Related]
10. Investigations of the highly efficient processing technique, chemical constituents, and anti-inflammatory effect of N-ethyl-2-pyrrolidinone-substituted flavan-3-ol (EPSF)-enriched white tea. Gao J; Chen D; Xie D; Peng J; Hu Z; Lin Z; Dai W Food Chem; 2024 Aug; 450():139328. PubMed ID: 38626712 [TBL] [Abstract][Full Text] [Related]
11. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity. Wang W; Zhang L; Wang S; Shi S; Jiang Y; Li N; Tu P Food Chem; 2014; 152():539-45. PubMed ID: 24444972 [TBL] [Abstract][Full Text] [Related]
12. An insight into trichomes-deficiency and trichomes-rich black teas by comparative metabolomics: The impact of oxidized trichomes on metabolic profiles and infusion color. Long P; Su S; Wen M; Liu X; Han Z; Ke JP; Zhou Y; Zhu M; Cheng Y; Shao Y; Wan X; Zhang L Food Res Int; 2024 Aug; 190():114638. PubMed ID: 38945627 [TBL] [Abstract][Full Text] [Related]
13. Sensory and chemical characteristics of Cao QQ; Fu YQ; Wang JQ; Zhang L; Wang F; Yin JF; Xu YQ Food Chem X; 2021 Dec; 12():100178. PubMed ID: 34927052 [TBL] [Abstract][Full Text] [Related]
14. Formation Mechanism of Di- Jiang Z; Zhou F; Huo H; Han Z; Qin C; Ho CT; Zhang L; Wan X J Agric Food Chem; 2023 Feb; 71(6):2975-2989. PubMed ID: 36734013 [TBL] [Abstract][Full Text] [Related]
15. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Xu YQ; Liu PP; Shi J; Gao Y; Wang QS; Yin JF Food Chem; 2018 May; 249():176-183. PubMed ID: 29407922 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive investigation on non-volatile and volatile metabolites in four types of green teas obtained from the same tea cultivar of Longjing 43 (Camellia sinensis var. sinensis) using the widely targeted metabolomics. Shi Y; Zhu Y; Ma W; Shi J; Peng Q; Lin Z; Lv H Food Chem; 2022 Nov; 394():133501. PubMed ID: 35728471 [TBL] [Abstract][Full Text] [Related]
17. Study on Jiang Z; Zhang H; Han Z; Zhai X; Qin C; Wen M; Lai G; Ho CT; Zhang L; Wan X J Agric Food Chem; 2022 Mar; 70(12):3832-3841. PubMed ID: 35289174 [No Abstract] [Full Text] [Related]
18. Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas. Xu YQ; Zou C; Gao Y; Chen JX; Wang F; Chen GS; Yin JF Food Chem; 2017 Dec; 236():142-151. PubMed ID: 28624083 [TBL] [Abstract][Full Text] [Related]
19. Detection and quantification of flavoalkaloids in different tea cultivars and during tea processing using UPLC-TOF-MS/MS. Zhang P; Wang W; Liu XH; Yang Z; Gaur R; Wang JJ; Ke JP; Bao GH Food Chem; 2021 Mar; 339():127864. PubMed ID: 32858385 [TBL] [Abstract][Full Text] [Related]
20. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Liao Y; Fu X; Zhou H; Rao W; Zeng L; Yang Z Food Chem; 2019 Sep; 292():204-210. PubMed ID: 31054666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]