These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31554132)
1. Identification and expression analyses of new genes associated with ciprofloxacin resistance in Vibrio parahaemolyticus. Zhou H; Liang Y; Gao L; Ren J; Xue F; Guo D; Jiang Y; Yang Z; Lian L; Dai J Food Res Int; 2019 Nov; 125():108629. PubMed ID: 31554132 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Ciprofloxacin Resistance in Laboratory-Derived Mutants of Vibrio parahaemolyticus with qnr Gene. Ma G; Wu G; Li X; Wang H; Zhou M Foodborne Pathog Dis; 2018 Nov; 15(11):711-717. PubMed ID: 30074404 [TBL] [Abstract][Full Text] [Related]
3. Sequence analysis of the gyrA and parC homologues of a wild-type strain of Vibrio parahaemolyticus and its fluoroquinolone-resistant mutants. Okuda J; Hayakawa E; Nishibuchi M; Nishino T Antimicrob Agents Chemother; 1999 May; 43(5):1156-62. PubMed ID: 10223929 [TBL] [Abstract][Full Text] [Related]
4. Prevalence, virulence, antimicrobial resistance, and molecular characterization of fluoroquinolone resistance of Vibrio parahaemolyticus from different types of food samples in China. Lei T; Jiang F; He M; Zhang J; Zeng H; Chen M; Pang R; Wu S; Wei L; Wang J; Ding Y; Wu Q Int J Food Microbiol; 2020 Mar; 317():108461. PubMed ID: 31794931 [TBL] [Abstract][Full Text] [Related]
5. Genomic Characterization of Ciprofloxacin Resistance in Laboratory-Derived Mutants of Xia H; Yan N; Jin J; Hou W; Wang H; Zhou M Foodborne Pathog Dis; 2022 Aug; 19(8):543-549. PubMed ID: 35727114 [TBL] [Abstract][Full Text] [Related]
6. In Vitro Activity of Sitafloxacin and Additional Newer Generation Fluoroquinolones Against Ciprofloxacin-Resistant Neisseria gonorrhoeae Isolates. Hamasuna R; Ohnishi M; Matsumoto M; Okumura R; Unemo M; Matsumoto T Microb Drug Resist; 2018; 24(1):30-34. PubMed ID: 28581359 [TBL] [Abstract][Full Text] [Related]
7. Contribution of mutations in DNA gyrase and topoisomerase IV genes to ciprofloxacin resistance in Escherichia coli clinical isolates. Bansal S; Tandon V Int J Antimicrob Agents; 2011 Mar; 37(3):253-5. PubMed ID: 21236644 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial susceptibility pattern and sequence analysis of DNA gyrase and DNA topoisomerase IV in Salmonella enterica serovars Typhi and Paratyphi A isolates with decreased susceptibility to ciprofloxacin. Misra R; Thakare R; Amrin N; Prasad KN; Chopra S; Dhole TN Trans R Soc Trop Med Hyg; 2016 Aug; 110(8):472-9. PubMed ID: 27618918 [TBL] [Abstract][Full Text] [Related]
9. Mutations in the gyrA and parC genes in ciprofloxacin-resistant clinical isolates of Acinetobacter baumannii in Korea. Lee JK; Lee YS; Park YK; Kim BS Microbiol Immunol; 2005; 49(7):647-53. PubMed ID: 16034208 [TBL] [Abstract][Full Text] [Related]
10. Mutation patterns in gyrA and parC genes of ciprofloxacin resistant isolates of Neisseria gonorrhoeae from India. Chaudhry U; Ray K; Bala M; Saluja D Sex Transm Infect; 2002 Dec; 78(6):440-4. PubMed ID: 12473806 [TBL] [Abstract][Full Text] [Related]
11. Accumulation of mutations in DNA gyrase and topoisomerase IV genes contributes to fluoroquinolone resistance in Vibrio cholerae O139 strains. Zhou Y; Yu L; Li J; Zhang L; Tong Y; Kan B Int J Antimicrob Agents; 2013 Jul; 42(1):72-5. PubMed ID: 23643392 [TBL] [Abstract][Full Text] [Related]
12. Differential expression of outer membrane proteins and quinolone resistance determining region mutations can lead to ciprofloxacin resistance in Salmonella Typhi. Akshay SD; Nayak S; Deekshit VK; Rohit A; Maiti B Arch Microbiol; 2023 Mar; 205(4):136. PubMed ID: 36961627 [TBL] [Abstract][Full Text] [Related]
13. Soft sweep development of resistance in Escherichia coli under fluoroquinolone stress. Xie X; Lv R; Yang C; Song Y; Yan Y; Cui Y; Yang R J Microbiol; 2019 Dec; 57(12):1056-1064. PubMed ID: 31555989 [TBL] [Abstract][Full Text] [Related]
15. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Nouri R; Ahangarzadeh Rezaee M; Hasani A; Aghazadeh M; Asgharzadeh M Braz J Microbiol; 2016; 47(4):925-930. PubMed ID: 27522930 [TBL] [Abstract][Full Text] [Related]
16. Analysis of gyrA and parC mutations in enterococci from environmental samples with reduced susceptibility to ciprofloxacin. Petersen A; Jensen LB FEMS Microbiol Lett; 2004 Feb; 231(1):73-6. PubMed ID: 14769469 [TBL] [Abstract][Full Text] [Related]
17. Substitutions of Ser83Leu in GyrA and Ser80Leu in ParC Associated with Quinolone Resistance in Acinetobacter pittii. Gu DX; Hu YJ; Zhou HW; Zhang R; Chen GX Microb Drug Resist; 2015 Jun; 21(3):345-51. PubMed ID: 25514581 [TBL] [Abstract][Full Text] [Related]
18. Prevalence and characterisation of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes among Shigella isolates from Henan, China, between 2001 and 2008. Yang H; Duan G; Zhu J; Zhang W; Xi Y; Fan Q Int J Antimicrob Agents; 2013 Aug; 42(2):173-7. PubMed ID: 23796894 [TBL] [Abstract][Full Text] [Related]
19. Mutations in the gyrA and parC genes and in vitro activities of fluoroquinolones in 91 clinical isolates of Neisseria gonorrhoeae in Japan. Shigemura K; Shirakawa T; Okada H; Hinata N; Acharya B; Kinoshita S; Kofuku T; Kawabata M; Kamidono S; Arakawa S; Gotoh A Sex Transm Dis; 2004 Mar; 31(3):180-4. PubMed ID: 15076932 [TBL] [Abstract][Full Text] [Related]
20. Clinical characteristics in adult patients with Salmonella bacteremia and analysis of ciprofloxacin-nonsusceptible isolates. Cheng MW; Lee CM; Wang NY; Wu AY; Lin CC; Weng LC; Liu CP; Shih SC J Microbiol Immunol Infect; 2015 Dec; 48(6):692-8. PubMed ID: 26542649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]