BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31554353)

  • 21. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.
    Imura T; Toda H; Iwamoto Y; Inagawa T; Imada N; Tanaka R; Inoue Y; Araki H; Araki O
    J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106011. PubMed ID: 34325274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark.
    Abdel-Fattah MA; Othman NA; Goher N
    Comput Intell Neurosci; 2022; 2022():9898831. PubMed ID: 35251161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion.
    Duan C; Liu F; Gao S; Zhao J; Niu L; Li N; Liu S; Wang G; Zhou X; Ren Y; Xu W; Liu X
    Clin Neuroradiol; 2022 Mar; 32(1):215-223. PubMed ID: 34156513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Intelligence: A Universal Virtual Tool to Augment Tutoring in Higher Education.
    Hemachandran K; Verma P; Pareek P; Arora N; Rajesh Kumar KV; Ahanger TA; Pise AA; Ratna R
    Comput Intell Neurosci; 2022; 2022():1410448. PubMed ID: 35586099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Breast Cancer Subtypes Classification with Hybrid Machine Learning Model.
    Sarkar S; Mali K
    Methods Inf Med; 2022 Sep; 61(3-04):68-83. PubMed ID: 36096144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing Children's Fine Motor Skills With Sensor-Augmented Toys: Machine Learning Approach.
    Brons A; de Schipper A; Mironcika S; Toussaint H; Schouten B; Bakkes S; Kröse B
    J Med Internet Res; 2021 Apr; 23(4):e24237. PubMed ID: 33885371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diagnostic Accuracy of Different Machine Learning Algorithms for Breast Cancer Risk Calculation: a Meta-Analysis.
    Nindrea RD; Aryandono T; Lazuardi L; Dwiprahasto I
    Asian Pac J Cancer Prev; 2018 Jul; 19(7):1747-1752. PubMed ID: 30049182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advancing Breast Cancer Diagnosis through Breast Mass Images, Machine Learning, and Regression Models.
    Zaylaa AJ; Kourtian S
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels.
    Podolsky MD; Barchuk AA; Kuznetcov VI; Gusarova NF; Gaidukov VS; Tarakanov SA
    Asian Pac J Cancer Prev; 2016; 17(2):835-8. PubMed ID: 26925688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Intelligent Fault Diagnosis Technique of Rotary Machine Element Bearing: A Machine Learning Approach.
    Saha DK; Hoque ME; Badihi H
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Software Defect Prediction for Healthcare Big Data: An Empirical Evaluation of Machine Learning Techniques.
    Khan B; Naseem R; Shah MA; Wakil K; Khan A; Uddin MI; Mahmoud M
    J Healthc Eng; 2021; 2021():8899263. PubMed ID: 33815733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Classification Algorithm-Based Hybrid Diabetes Prediction Model.
    Edeh MO; Khalaf OI; Tavera CA; Tayeb S; Ghouali S; Abdulsahib GM; Richard-Nnabu NE; Louni A
    Front Public Health; 2022; 10():829519. PubMed ID: 35433625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A graph-based gene selection method for medical diagnosis problems using a many-objective PSO algorithm.
    Azadifar S; Ahmadi A
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):333. PubMed ID: 34838034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-domain heart rate variability features for automatic congestive heart failure prediction.
    Moses JC; Adibi S; Angelova M; Islam SMS
    ESC Heart Fail; 2024 Feb; 11(1):378-389. PubMed ID: 38009405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Classification of Dog Activities with Quaternion-Based Fusion Approach on High-Dimensional Raw Data from Wearable Sensors.
    Muminov A; Mukhiddinov M; Cho J
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine Learning Technology-Based Heart Disease Detection Models.
    Nagavelli U; Samanta D; Chakraborty P
    J Healthc Eng; 2022; 2022():7351061. PubMed ID: 35265303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Highly Discriminative Hybrid Feature Selection Algorithm for Cancer Diagnosis.
    Elemam T; Elshrkawey M
    ScientificWorldJournal; 2022; 2022():1056490. PubMed ID: 35983572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Missing data techniques in classification for cardiovascular dysautonomias diagnosis.
    Idri A; Kadi I; Abnane I; Fernandez-Aleman JL
    Med Biol Eng Comput; 2020 Nov; 58(11):2863-2878. PubMed ID: 32970269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.