These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
534 related articles for article (PubMed ID: 31554396)
1. FePt@MnO-Based Nanotheranostic Platform with Acidity-Triggered Dual-Ions Release for Enhanced MR Imaging-Guided Ferroptosis Chemodynamic Therapy. Yang B; Liu Q; Yao X; Zhang D; Dai Z; Cui P; Zhang G; Zheng X; Yu D ACS Appl Mater Interfaces; 2019 Oct; 11(42):38395-38404. PubMed ID: 31554396 [TBL] [Abstract][Full Text] [Related]
2. Ultrasmall Ternary FePtMn Nanocrystals with Acidity-Triggered Dual-Ions Release and Hypoxia Relief for Multimodal Synergistic Chemodynamic/Photodynamic/Photothermal Cancer Therapy. Yang B; Dai Z; Zhang G; Hu Z; Yao X; Wang S; Liu Q; Zheng X Adv Healthc Mater; 2020 Nov; 9(21):e1901634. PubMed ID: 32959536 [TBL] [Abstract][Full Text] [Related]
3. pH-Responsive, Self-Sacrificial Nanotheranostic Agent for Potential In Vivo and In Vitro Dual Modal MRI/CT Imaging, Real-Time, and In Situ Monitoring of Cancer Therapy. Yue L; Wang J; Dai Z; Hu Z; Chen X; Qi Y; Zheng X; Yu D Bioconjug Chem; 2017 Feb; 28(2):400-409. PubMed ID: 28042941 [TBL] [Abstract][Full Text] [Related]
4. Dendrimer/metal-phenolic nanocomplexes encapsulating CuO Huang H; Guo H; Liu J; Ni C; Xia L; Cao X; Xia J; Shi X; Guo R Acta Biomater; 2024 Jul; 183():252-263. PubMed ID: 38801869 [TBL] [Abstract][Full Text] [Related]
5. Multimode Imaging-Guided Photothermal/Chemodynamic Synergistic Therapy Nanoagent with a Tumor Microenvironment Responded Effect. Dong Y; Dong S; Wang Z; Feng L; Sun Q; Chen G; He F; Liu S; Li W; Yang P ACS Appl Mater Interfaces; 2020 Nov; 12(47):52479-52491. PubMed ID: 33196186 [TBL] [Abstract][Full Text] [Related]
6. A strategy of "adding fuel to the flames" enables a self-accelerating cycle of ferroptosis-cuproptosis for potent antitumor therapy. Huang L; Zhu J; Wu G; Xiong W; Feng J; Yan C; Yang J; Li Z; Fan Q; Ren B; Li Y; Chen C; Yu X; Shen Z Biomaterials; 2024 Dec; 311():122701. PubMed ID: 38981152 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles. Huang H; Yue T; Xu K; Golzarian J; Yu J; Huang J Colloids Surf B Biointerfaces; 2015 Jul; 131():148-54. PubMed ID: 25982318 [TBL] [Abstract][Full Text] [Related]
8. One-pot preparation of hydrophilic manganese oxide nanoparticles as T Li J; Wu C; Hou P; Zhang M; Xu K Biosens Bioelectron; 2018 Apr; 102():1-8. PubMed ID: 29101783 [TBL] [Abstract][Full Text] [Related]
9. Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T Xiao S; Yu X; Zhang L; Zhang Y; Fan W; Sun T; Zhou C; Liu Y; Liu Y; Gong M; Zhang D Int J Nanomedicine; 2019; 14():8499-8507. PubMed ID: 31695377 [TBL] [Abstract][Full Text] [Related]
10. PDGFB targeting biodegradable FePt alloy assembly for MRI guided starvation-enhancing chemodynamic therapy of cancer. Zhang C; Leng Z; Wang Y; Ran L; Qin X; Xin H; Xu X; Zhang G; Xu Z J Nanobiotechnology; 2022 Jun; 20(1):264. PubMed ID: 35672821 [TBL] [Abstract][Full Text] [Related]
11. A novel multifunctional FePt/BP nanoplatform for synergistic photothermal/photodynamic/chemodynamic cancer therapies and photothermally-enhanced immunotherapy. Yao X; Yang B; Wang S; Dai Z; Zhang D; Zheng X; Liu Q J Mater Chem B; 2020 Sep; 8(35):8010-8021. PubMed ID: 32766612 [TBL] [Abstract][Full Text] [Related]
12. Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. Chen N; Shao C; Qu Y; Li S; Gu W; Zheng T; Ye L; Yu C ACS Appl Mater Interfaces; 2014 Nov; 6(22):19850-7. PubMed ID: 25335117 [TBL] [Abstract][Full Text] [Related]
13. In Vivo Dual-Modality Fluorescence and Magnetic Resonance Imaging-Guided Lymph Node Mapping with Good Biocompatibility Manganese Oxide Nanoparticles. Zhan Y; Zhan W; Li H; Xu X; Cao X; Zhu S; Liang J; Chen X Molecules; 2017 Dec; 22(12):. PubMed ID: 29231865 [TBL] [Abstract][Full Text] [Related]
14. Engineering H Han Y; Ouyang J; Li Y; Wang F; Jiang JH ACS Appl Mater Interfaces; 2020 Jan; 12(1):288-297. PubMed ID: 31834761 [TBL] [Abstract][Full Text] [Related]
15. Fe Chen T; Chu Q; Li M; Han G; Li X J Nanobiotechnology; 2021 Jul; 19(1):206. PubMed ID: 34246260 [TBL] [Abstract][Full Text] [Related]
16. Fusiform-Like Copper(II)-Based Metal-Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Therapy. Wang Z; Liu B; Sun Q; Dong S; Kuang Y; Dong Y; He F; Gai S; Yang P ACS Appl Mater Interfaces; 2020 Apr; 12(15):17254-17267. PubMed ID: 32227859 [TBL] [Abstract][Full Text] [Related]
17. Tumor-Specific Endogenous Fe Fan Z; Jiang B; Zhu Q; Xiang S; Tu L; Yang Y; Zhao Q; Huang D; Han J; Su G; Ge D; Hou Z ACS Appl Mater Interfaces; 2020 Apr; 12(13):14884-14904. PubMed ID: 32167740 [TBL] [Abstract][Full Text] [Related]
18. FeP-Based Nanotheranostic Platform for Enhanced Phototherapy/Ferroptosis/Chemodynamic Therapy. An N; Tang S; Wang Y; Luan J; Shi Y; Gao M; Guo C Small; 2024 Aug; 20(32):e2309940. PubMed ID: 38534030 [TBL] [Abstract][Full Text] [Related]
19. Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy. Wang P; Liang C; Zhu J; Yang N; Jiao A; Wang W; Song X; Dong X ACS Appl Mater Interfaces; 2019 Nov; 11(44):41140-41147. PubMed ID: 31603650 [TBL] [Abstract][Full Text] [Related]
20. The therapeutic effect and MR molecular imaging of FA-PEG-FePt/DDP nanoliposomes in AMF on ovarian cancer. Bian X; Guo T; Chen G; Nie D; Yue M; Zhu Y; Lin M Int J Nanomedicine; 2024; 19():5227-5243. PubMed ID: 38855734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]