BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31555019)

  • 1. Operational and environmental conditions regulate the frictional behavior of two-dimensional materials.
    Tran-Khac BC; Kim HJ; DelRio FW; Chung KH
    Appl Surf Sci; 2019; 483():. PubMed ID: 31555019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity-dependent friction enhances tribomechanical differences between monolayer and multilayer graphene.
    Ptak F; Almeida CM; Prioli R
    Sci Rep; 2019 Oct; 9(1):14555. PubMed ID: 31601937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Strength and Surface Damage Characteristics of Atomically Thin h-BN, MoS
    Tran Khac BC; DelRio FW; Chung KH
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):9164-9177. PubMed ID: 29464947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Friction Behavior of Transition-Metal Dichalcogenides: Role of the Chalcogenide.
    Vazirisereshk MR; Hasz K; Zhao MQ; Johnson ATC; Carpick RW; Martini A
    ACS Nano; 2020 Nov; 14(11):16013-16021. PubMed ID: 33090766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS
    Vazirisereshk MR; Ye H; Ye Z; Otero-de-la-Roza A; Zhao MQ; Gao Z; Johnson ATC; Johnson ER; Carpick RW; Martini A
    Nano Lett; 2019 Aug; 19(8):5496-5505. PubMed ID: 31267757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Assessment of Friction Characteristics of Single-Layer MoS2 and Graphene Using Atomic Force Microscopy.
    Khac BC; Chung KH
    J Nanosci Nanotechnol; 2016 May; 16(5):4428-33. PubMed ID: 27483768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Nanoscale Lubrication Mechanisms of Multilayer MoS
    Claerbout VEP; Nicolini P; Polcar T
    Front Chem; 2021; 9():684441. PubMed ID: 34249859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness dependent friction on few-layer MoS
    Fang L; Liu DM; Guo Y; Liao ZM; Luo JB; Wen SZ
    Nanotechnology; 2017 Jun; 28(24):245703. PubMed ID: 28471749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging.
    Tian K; Goldsby DL; Carpick RW
    Phys Rev Lett; 2018 May; 120(18):186101. PubMed ID: 29775377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling nanoscale friction through the competition between capillary adsorption and thermally activated sliding.
    Greiner C; Felts JR; Dai Z; King WP; Carpick RW
    ACS Nano; 2012 May; 6(5):4305-13. PubMed ID: 22515940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity-Dependent Friction of Graphene at Electrical Contact Interfaces.
    Lang H; Peng Y; Zou K; Huang Y; Song C
    Langmuir; 2023 Aug; 39(32):11363-11370. PubMed ID: 37532707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorination of graphene enhances friction due to increased corrugation.
    Li Q; Liu XZ; Kim SP; Shenoy VB; Sheehan PE; Robinson JT; Carpick RW
    Nano Lett; 2014 Sep; 14(9):5212-7. PubMed ID: 25072968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale friction on MoS
    Liu Z; Szczefanowicz B; Lopes JMJ; Gan Z; George A; Turchanin A; Bennewitz R
    Nanoscale; 2023 Mar; 15(12):5809-5815. PubMed ID: 36857670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of the friction strengthening of graphene on velocity.
    Zeng X; Peng Y; Liu L; Lang H; Cao X
    Nanoscale; 2018 Jan; 10(4):1855-1864. PubMed ID: 29309078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-Scale Friction Characteristics of Graphene under Conductive AFM with Applied Voltages.
    Lang H; Peng Y; Cao X; Zou K
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25503-25511. PubMed ID: 32394710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of Nanoscale Friction Behaviors of Graphene on Gold Substrates Using Molecular Dynamics.
    Zhu P; Li R
    Nanoscale Res Lett; 2018 Feb; 13(1):34. PubMed ID: 29396735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds.
    Liu XZ; Ye Z; Dong Y; Egberts P; Carpick RW; Martini A
    Phys Rev Lett; 2015 Apr; 114(14):146102. PubMed ID: 25910138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.