These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 31555063)
1. iHyd-PseAAC (EPSV): Identifying Hydroxylation Sites in Proteins by Extracting Enhanced Position and Sequence Variant Feature Ehsan A; Mahmood MK; Khan YD; Barukab OM; Khan SA; Chou KC Curr Genomics; 2019 Feb; 20(2):124-133. PubMed ID: 31555063 [TBL] [Abstract][Full Text] [Related]
2. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Xu Y; Wen X; Shao XJ; Deng NY; Chou KC Int J Mol Sci; 2014 May; 15(5):7594-610. PubMed ID: 24857907 [TBL] [Abstract][Full Text] [Related]
3. iHyd-LysSite (EPSV): Identifying Hydroxylysine Sites in Protein Using Statistical Formulation by Extracting Enhanced Position and Sequence Variant Feature Technique. Mahmood MK; Ehsan A; Khan YD; Chou KC Curr Genomics; 2020 Nov; 21(7):536-545. PubMed ID: 33214770 [TBL] [Abstract][Full Text] [Related]
4. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC Oncotarget; 2016 Jul; 7(28):44310-44321. PubMed ID: 27322424 [TBL] [Abstract][Full Text] [Related]
5. A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites. Long H; Liao B; Xu X; Yang J Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30231550 [TBL] [Abstract][Full Text] [Related]
7. SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. Hussain W; Khan YD; Rasool N; Khan SA; Chou KC J Theor Biol; 2019 May; 468():1-11. PubMed ID: 30768975 [TBL] [Abstract][Full Text] [Related]
8. iMethylK_pseAAC: Improving Accuracy of Lysine Methylation Sites Identification by Incorporating Statistical Moments and Position Relative Features into General PseAAC Ilyas S; Hussain W; Ashraf A; Khan YD; Khan SA; Chou KC Curr Genomics; 2019 May; 20(4):275-292. PubMed ID: 32030087 [TBL] [Abstract][Full Text] [Related]
9. iPhosH-PseAAC: Identify Phosphohistidine Sites in Proteins by Blending Statistical Moments and Position Relative Features According to the Chou's 5-Step Rule and General Pseudo Amino Acid Composition. Awais M; Hussain W; Khan YD; Rasool N; Khan SA; Chou KC IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):596-610. PubMed ID: 31144645 [TBL] [Abstract][Full Text] [Related]
10. SPalmitoylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Hussain W; Khan YD; Rasool N; Khan SA; Chou KC Anal Biochem; 2019 Mar; 568():14-23. PubMed ID: 30593778 [TBL] [Abstract][Full Text] [Related]
11. pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General PseAAC and IHTS Treatment to Balance Training Dataset. Xiao X; Cheng X; Chen G; Mao Q; Chou KC Med Chem; 2019; 15(5):496-509. PubMed ID: 30556503 [TBL] [Abstract][Full Text] [Related]
12. Using CHOU'S 5-Steps Rule to Predict O-Linked Serine Glycosylation Sites by Blending Position Relative Features and Statistical Moment. Akmal MA; Hussain W; Rasool N; Khan YD; Khan SA; Chou KC IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):2045-2056. PubMed ID: 31985438 [TBL] [Abstract][Full Text] [Related]
13. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. Xu Y; Ding J; Wu LY; Chou KC PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062 [TBL] [Abstract][Full Text] [Related]
14. iProtease-PseAAC(2L): A two-layer predictor for identifying proteases and their types using Chou's 5-step-rule and general PseAAC. Khan YD; Amin N; Hussain W; Rasool N; Khan SA; Chou KC Anal Biochem; 2020 Jan; 588():113477. PubMed ID: 31654612 [TBL] [Abstract][Full Text] [Related]
15. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC. Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757 [TBL] [Abstract][Full Text] [Related]
16. iPGK-PseAAC: Identify Lysine Phosphoglycerylation Sites in Proteins by Incorporating Four Different Tiers of Amino Acid Pairwise Coupling Information into the General PseAAC. Liu LM; Xu Y; Chou KC Med Chem; 2017; 13(6):552-559. PubMed ID: 28521678 [TBL] [Abstract][Full Text] [Related]
17. iCrotoK-PseAAC: Identify lysine crotonylation sites by blending position relative statistical features according to the Chou's 5-step rule. Malebary SJ; Rehman MSU; Khan YD PLoS One; 2019; 14(11):e0223993. PubMed ID: 31751380 [TBL] [Abstract][Full Text] [Related]
18. A new signal characterization and signal-based Chou's PseAAC representation of protein sequences. Sanchez V; Peinado AM; Pérez-Córdoba JL; Gómez AM J Bioinform Comput Biol; 2015 Oct; 13(5):1550024. PubMed ID: 26434573 [TBL] [Abstract][Full Text] [Related]
19. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Qiu WR; Sun BQ; Xiao X; Xu ZC; Jia JH; Chou KC Genomics; 2018 Sep; 110(5):239-246. PubMed ID: 29107015 [TBL] [Abstract][Full Text] [Related]
20. Using Chou's pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach. Zhang SW; Chen W; Yang F; Pan Q Amino Acids; 2008 Oct; 35(3):591-8. PubMed ID: 18427713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]