These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31555079)

  • 1. Corrigendum: Effects of Different Re-referencing Methods on Spontaneously Generated Ear-EEG.
    Choi SI; Hwang HJ
    Front Neurosci; 2019; 13():908. PubMed ID: 31555079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Different Re-referencing Methods on Spontaneously Generated Ear-EEG.
    Choi SI; Hwang HJ
    Front Neurosci; 2019; 13():822. PubMed ID: 31440129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface.
    Choi SI; Han CH; Choi GY; Shin J; Song KS; Im CH; Hwang HJ
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30158505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum: Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces - Current Limitations and Future Directions.
    Ahn S; Jun SC
    Front Hum Neurosci; 2021; 15():645869. PubMed ID: 33597855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.
    Shin J; Kwon J; Im CH
    Front Neuroinform; 2018; 12():5. PubMed ID: 29527160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrigendum: EEG biomarkers related with the functional state of stroke patients.
    Sebastián-Romagosa M; Udina E; Ortner R; Dinarès-Ferran J; Cho W; Murovec N; Matencio-Peralba C; Sieghartsleitner S; Allison BZ; Guger C
    Front Neurosci; 2022; 16():1032959. PubMed ID: 36213753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining and quantifying users' mental imagery-based BCI skills: a first step.
    Lotte F; Jeunet C
    J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrigendum: The NMT Scalp EEG Dataset: An Open-Source Annotated Dataset of Healthy and Pathological EEG Recordings for Predictive Modeling.
    Khan HA; Ul Ain R; Kamboh AM; Butt HT; Shafait S; Alamgir W; Stricker D; Shafait F
    Front Neurosci; 2022; 16():877868. PubMed ID: 35368270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.
    Shin Y; Lee S; Ahn M; Cho H; Jun SC; Lee HN
    Comput Biol Med; 2015 Nov; 66():29-38. PubMed ID: 26378500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroencephalography-based endogenous brain-computer interface for online communication with a completely locked-in patient.
    Han CH; Kim YW; Kim DY; Kim SH; Nenadic Z; Im CH
    J Neuroeng Rehabil; 2019 Jan; 16(1):18. PubMed ID: 30700310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive review of EEG-based brain-computer interface paradigms.
    Abiri R; Borhani S; Sellers EW; Jiang Y; Zhao X
    J Neural Eng; 2019 Feb; 16(1):011001. PubMed ID: 30523919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilizing gamma band to improve mental task based brain-computer interface design.
    Palaniappan R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):299-303. PubMed ID: 17009489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.
    Bascil MS; Tesneli AY; Temurtas F
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):665-76. PubMed ID: 27376723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface.
    Raza H; Rathee D; Zhou SM; Cecotti H; Prasad G
    Neurocomputing (Amst); 2019 May; 343():154-166. PubMed ID: 32226230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.