These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31555224)

  • 1. Differences in Applied Redox Potential on Cathodes Enrich for Diverse Electrochemically Active Microbial Isolates From a Marine Sediment.
    Lam BR; Barr CR; Rowe AR; Nealson KH
    Front Microbiol; 2019; 10():1979. PubMed ID: 31555224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism.
    Rowe AR; Chellamuthu P; Lam B; Okamoto A; Nealson KH
    Front Microbiol; 2014; 5():784. PubMed ID: 25642220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in electrode redox potential selects for different microorganisms under cathodic current flow from electrodes in marine sediments.
    Lam BR; Rowe AR; Nealson KH
    Environ Microbiol; 2018 Jun; 20(6):2270-2287. PubMed ID: 29786168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes.
    Summers ZM; Gralnick JA; Bond DR
    mBio; 2013 Jan; 4(1):e00420-12. PubMed ID: 23362318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Electron Uptake from a Cathode into
    Rowe AR; Rajeev P; Jain A; Pirbadian S; Okamoto A; Gralnick JA; El-Naggar MY; Nealson KH
    mBio; 2018 Feb; 9(1):. PubMed ID: 29487241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species.
    Jangir Y; French S; Momper LM; Moser DP; Amend JP; El-Naggar MY
    Front Microbiol; 2016; 7():756. PubMed ID: 27242768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri.
    Rowe AR; Xu S; Gardel E; Bose A; Girguis P; Amend JP; El-Naggar MY
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retracted: The bidirectional extracellular electron transfer process aids iron cycling by
    Yadav S; Sadhotra C; Patil SA
    Appl Environ Microbiol; 2023 Sep; ():e0060923. PubMed ID: 37681980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors.
    Levar CE; Chan CH; Mehta-Kolte MG; Bond DR
    mBio; 2014 Nov; 5(6):e02034. PubMed ID: 25425235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1.
    Zhang T; Bain TS; Barlett MA; Dar SA; Snoeyenbos-West OL; Nevin KP; Lovley DR
    Microbiology (Reading); 2014 Jan; 160(Pt 1):123-129. PubMed ID: 24169815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes.
    Ishii S; Suzuki S; Tenney A; Nealson KH; Bretschger O
    ISME J; 2018 Dec; 12(12):2844-2863. PubMed ID: 30050163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell.
    Holmes DE; Nicoll JS; Bond DR; Lovley DR
    Appl Environ Microbiol; 2004 Oct; 70(10):6023-30. PubMed ID: 15466546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologic, Genomic, and Electrochemical Characterization of Two Heterotrophic Marine Sediment Microbes from the
    Vinales J; Sackett J; Trutschel L; Amir W; Norman C; Leach E; Wilbanks E; Rowe A
    Microorganisms; 2022 Jun; 10(6):. PubMed ID: 35744737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the Potential of Electron Extraction from Microbes with Ferrocene-Containing Conjugated Oligoelectrolytes.
    McCuskey SR; Rengert ZD; Zhang M; Helgeson ME; Nguyen TQ; Bazan GC
    Adv Biosyst; 2019 Feb; 3(2):e1800303. PubMed ID: 32627367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.
    Lipsewers YA; Vasquez-Cardenas D; Seitaj D; Schauer R; Hidalgo-Martinez S; Sinninghe Damsté JS; Meysman FJR; Villanueva L; Boschker HTS
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity production by Geobacter sulfurreducens attached to electrodes.
    Bond DR; Lovley DR
    Appl Environ Microbiol; 2003 Mar; 69(3):1548-55. PubMed ID: 12620842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Winogradsky Bioelectrochemical System as a Novel Strategy to Enrich Electrochemically Active Microorganisms from Arsenic-Rich Sediments.
    Cantillo-González A; Anguita J; Rojas C; Vargas IT
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of cell growth by uncoupling extracellular electron uptake and oxidative stress production in sediment sulfate-reducing bacteria.
    Deng X; Saito J; Kaksonen A; Okamoto A
    Environ Int; 2020 Nov; 144():106006. PubMed ID: 32795748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells under ferric iron stimulation.
    Hamdan HZ; Salam DA
    Environ Pollut; 2020 Aug; 263(Pt A):114658. PubMed ID: 33618484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Manipulation of Desulfovibrio ferrophilus and Evaluation of Fe(III) Oxide Reduction Mechanisms.
    Ueki T; Woodard TL; Lovley DR
    Microbiol Spectr; 2022 Dec; 10(6):e0392222. PubMed ID: 36445123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.