BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31555229)

  • 1. Boosting Heterologous Phenazine Production in
    Askitosari TD; Boto ST; Blank LM; Rosenbaum MA
    Front Microbiol; 2019; 10():1990. PubMed ID: 31555229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440.
    Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA
    Front Microbiol; 2015; 6():284. PubMed ID: 25914687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Production of
    Schmitz S; Rosenbaum MA
    ACS Chem Biol; 2020 Dec; 15(12):3244-3252. PubMed ID: 33258592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. phz1 contributes much more to phenazine-1-carboxylic acid biosynthesis than phz2 in Pseudomonas aeruginosa rpoS mutant.
    Sun L; Chi X; Feng Z; Wang K; Kai L; Zhang K; Cheng S; Hao X; Xie W; Ge Y
    J Basic Microbiol; 2019 Sep; 59(9):914-923. PubMed ID: 31294863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Regulation of the Phenazine Biosynthetic Operons by Quorum Sensing in
    Higgins S; Heeb S; Rampioni G; Fletcher MP; Williams P; Cámara M
    Front Cell Infect Microbiol; 2018; 8():252. PubMed ID: 30083519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-Regulation between the phz1 and phz2 Operons Maintain a Balanced Level of Phenazine Biosynthesis in Pseudomonas aeruginosa PAO1.
    Cui Q; Lv H; Qi Z; Jiang B; Xiao B; Liu L; Ge Y; Hu X
    PLoS One; 2016; 11(1):e0144447. PubMed ID: 26735915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity.
    Recinos DA; Sekedat MD; Hernandez A; Cohen TS; Sakhtah H; Prince AS; Price-Whelan A; Dietrich LE
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19420-5. PubMed ID: 23129634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1.
    Mavrodi DV; Bonsall RF; Delaney SM; Soule MJ; Phillips G; Thomashow LS
    J Bacteriol; 2001 Nov; 183(21):6454-65. PubMed ID: 11591691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pip serves as an intermediate in RpoS-modulated phz2 expression and pyocyanin production in Pseudomonas aeruginosa.
    Chen L; Xu X; Fan C; Zhang R; Ji Y; Yu Z; Qu H; Feng Z; Chi X; Cheng S; Ge Y
    Microb Pathog; 2020 Oct; 147():104409. PubMed ID: 32707314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Positive regulation in expression of the phenazine-producing operon phz2 mediated by pip in Pseudomonas aeruginosa PAO1].
    Zhang Y; Cui Q; Zhao Z; Ming Y; Chi X; Feng Z; Cheng S; Xie W; Ge Y
    Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):127-35. PubMed ID: 23627105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling an Electroactive
    Askitosari TD; Berger C; Tiso T; Harnisch F; Blank LM; Rosenbaum MA
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33322018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LasR Might Act as an Intermediate in Overproduction of Phenazines in the Absence of RpoS in
    He Q; Feng Z; Wang Y; Wang K; Zhang K; Kai L; Hao X; Yu Z; Chen L; Ge Y
    J Microbiol Biotechnol; 2019 Aug; 29(8):1299-1309. PubMed ID: 31387340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system.
    Chukwubuikem A; Berger C; Mady A; Rosenbaum MA
    Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of
    Sun S; Tan LT; Fang YL; Jin ZJ; Zhou L; Goh BH; Lee LH; Zhou J; He YW
    Mol Plant Microbe Interact; 2020 Mar; 33(3):488-498. PubMed ID: 31710580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the regulation of pyocyanin synthesis by RsmA through MvaU and RpoS in Pseudomonas aeruginosa ID4365.
    Montelongo-Martínez LF; Hernández-Méndez C; Muriel-Millan LF; Hernández-Estrada R; Fabian-Del Olmo MJ; González-Valdez A; Soberón-Chávez G; Cocotl-Yañez M
    J Basic Microbiol; 2023 Jan; 63(1):51-63. PubMed ID: 36207285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201.
    Sun S; Zhou L; Jin K; Jiang H; He YW
    Sci Rep; 2016 Jul; 6():30352. PubMed ID: 27456813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
    Franco A; Elbahnasy M; Rosenbaum MA
    Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa.
    Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA
    Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18.
    Huang J; Xu Y; Zhang H; Li Y; Huang X; Ren B; Zhang X
    Appl Environ Microbiol; 2009 Oct; 75(20):6568-80. PubMed ID: 19717631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.