These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
464 related articles for article (PubMed ID: 31555364)
61. In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer. Baruah MM; Sharma N Med Oncol; 2019 Apr; 36(5):43. PubMed ID: 30937635 [TBL] [Abstract][Full Text] [Related]
62. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
63. Identification of key microRNAs and their targets in exosomes of pancreatic cancer using bioinformatics analysis. Zhao X; Ren Y; Cui N; Wang X; Cui Y Medicine (Baltimore); 2018 Sep; 97(39):e12632. PubMed ID: 30278585 [TBL] [Abstract][Full Text] [Related]
64. Identification of potential crucial genes and key pathways shared in Inflammatory Bowel Disease and cervical cancer by machine learning and integrated bioinformatics. Nguyen TB; Do DN; Nguyen-Thi ML; Hoang-The H; Tran TT; Nguyen-Thanh T Comput Biol Med; 2022 Oct; 149():105996. PubMed ID: 36049413 [TBL] [Abstract][Full Text] [Related]
65. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. Luo S; Cao N; Tang Y; Gu W PLoS One; 2017; 12(6):e0178549. PubMed ID: 28594854 [TBL] [Abstract][Full Text] [Related]
66. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis. Li Y; Li L J Ovarian Res; 2019 Nov; 12(1):106. PubMed ID: 31703725 [TBL] [Abstract][Full Text] [Related]
67. Identification of Key Biomarkers and Potential Molecular Mechanisms in Renal Cell Carcinoma by Bioinformatics Analysis. Li F; Guo P; Dong K; Guo P; Wang H; Lv X J Comput Biol; 2019 Nov; 26(11):1278-1295. PubMed ID: 31233342 [No Abstract] [Full Text] [Related]
68. Exploration of estrogen receptor-associated hub genes and potential molecular mechanisms in non-smoking females with lung adenocarcinoma using integrated bioinformatics analysis. Wang H; Zhang Z; Xu K; Wei S; Li L; Wang L Oncol Lett; 2019 Nov; 18(5):4605-4612. PubMed ID: 31611968 [TBL] [Abstract][Full Text] [Related]
69. Identification of novel transcription factor-microRNA-mRNA co-regulatory networks in pulmonary large-cell neuroendocrine carcinoma. Cai C; Zeng Q; Zhou G; Mu X Ann Transl Med; 2021 Jan; 9(2):133. PubMed ID: 33569435 [TBL] [Abstract][Full Text] [Related]
70. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis. Li T; Gao X; Han L; Yu J; Li H World J Surg Oncol; 2018 Jun; 16(1):114. PubMed ID: 29921304 [TBL] [Abstract][Full Text] [Related]
71. Bioinformatics analysis of key biomarkers and potential molecular mechanisms in hepatocellular carcinoma induced by hepatitis B virus. Li Z; Xu J; Cui H; Song J; Chen J; Wei J Medicine (Baltimore); 2020 May; 99(20):e20302. PubMed ID: 32443377 [TBL] [Abstract][Full Text] [Related]
72. Integrated analysis of multiple bioinformatics studies to identify microRNA-target gene-transcription factor regulatory networks in retinoblastoma. Wen Y; Zhu M; Zhang X; Xiao H; Wei Y; Zhao P Transl Cancer Res; 2022 Jul; 11(7):2225-2237. PubMed ID: 35966326 [TBL] [Abstract][Full Text] [Related]
73. Identification of hub genes, key miRNAs and potential molecular mechanisms of colorectal cancer. Wu S; Wu F; Jiang Z Oncol Rep; 2017 Oct; 38(4):2043-2050. PubMed ID: 28902367 [TBL] [Abstract][Full Text] [Related]
74. Comprehensive analysis of transcriptome data for identifying biomarkers and therapeutic targets in head and neck squamous cell carcinoma. Jin Y; Qin X Ann Transl Med; 2020 Mar; 8(6):282. PubMed ID: 32355726 [TBL] [Abstract][Full Text] [Related]
75. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
76. Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis. He F; Ai B; Tian L Biomed Rep; 2018 Oct; 9(4):305-312. PubMed ID: 30233782 [TBL] [Abstract][Full Text] [Related]
77. Identification and Interaction Analysis of Molecular Markers in Colorectal Cancer by Integrated Bioinformatics Analysis. Han B; Feng D; Yu X; Zhang Y; Liu Y; Zhou L Med Sci Monit; 2018 Aug; 24():6059-6069. PubMed ID: 30168505 [TBL] [Abstract][Full Text] [Related]
78. Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma. He Y; Liu J; Zhao Z; Zhao H Dis Esophagus; 2017 May; 30(5):1-8. PubMed ID: 28375447 [TBL] [Abstract][Full Text] [Related]
79. Integrated bioinformatics analysis for the identification of potential key genes affecting the pathogenesis of clear cell renal cell carcinoma. Cui H; Xu L; Li Z; Hou KZ; Che XF; Liu BF; Liu YP; Qu XJ Oncol Lett; 2020 Aug; 20(2):1573-1584. PubMed ID: 32724399 [TBL] [Abstract][Full Text] [Related]
80. Identification of biological targets of therapeutic intervention for diabetic nephropathy with bioinformatics approach. Wu T; Li Q; Wu T; Liu HY Exp Clin Endocrinol Diabetes; 2014 Nov; 122(10):587-91. PubMed ID: 25003364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]