These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31555788)

  • 1. Drag controlled formation of polymeric colloids with optical traps.
    Lasnoy E; Wagner O; Edri E; Shpaisman H
    Lab Chip; 2019 Oct; 19(20):3543-3551. PubMed ID: 31555788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles.
    Pope BL; Zhang M; Jo S; Dragnea B; Jacobson SC
    Anal Chem; 2024 Jul; 96(29):11845-11852. PubMed ID: 38976499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical funneling and trapping of gold colloids in convergent laser beams.
    Königer A; Köhler W
    ACS Nano; 2012 May; 6(5):4400-9. PubMed ID: 22530733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.
    Conkey DB; Trivedi RP; Pavani SR; Smalyukh II; Piestun R
    Opt Express; 2011 Feb; 19(5):3835-42. PubMed ID: 21369208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars.
    Applegate R; Squier J; Vestad T; Oakey J; Marr D
    Opt Express; 2004 Sep; 12(19):4390-8. PubMed ID: 19483988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influencing colloidal formation with optical traps.
    Jacob I; Edri E; Lasnoy E; Piperno S; Shpaisman H
    Soft Matter; 2017 Jan; 13(4):706-710. PubMed ID: 28075431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volumetric imaging of holographic optical traps.
    Roichman Y; Cholis I; Grier DG
    Opt Express; 2006 Oct; 14(22):10907-12. PubMed ID: 19529503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials.
    van der Horst A; Forde NR
    Opt Express; 2008 Dec; 16(25):20987-1003. PubMed ID: 19065239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers.
    Bzdek BR; Collard L; Sprittles JE; Hudson AJ; Reid JP
    J Chem Phys; 2016 Aug; 145(5):054502. PubMed ID: 27497560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy of Intensity, Phase, and Polarization Enables Versatile Optical Nanomanipulation.
    Nan F; Yan Z
    Nano Lett; 2020 Apr; 20(4):2778-2783. PubMed ID: 32134670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-rheology on (polymer-grafted) colloids using optical tweezers.
    Gutsche C; Elmahdy MM; Kegler K; Semenov I; Stangner T; Otto O; Ueberschär O; Keyser UF; Krueger M; Rauscher M; Weeber R; Harting J; Kim YW; Lobaskin V; Netz RR; Kremer F
    J Phys Condens Matter; 2011 May; 23(18):184114. PubMed ID: 21508470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All optical dynamic nanomanipulation with active colloidal tweezers.
    Ghosh S; Ghosh A
    Nat Commun; 2019 Sep; 10(1):4191. PubMed ID: 31519902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple holographic optical tweezers parallel calibration with optical potential well characterization.
    Belloni F; Monneret S; Monduc F; Scordia M
    Opt Express; 2008 Jun; 16(12):9011-20. PubMed ID: 18545612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturized high-NA focusing-mirror multiple optical tweezers.
    Merenda F; Rohner J; Fournier JM; Salathé RP
    Opt Express; 2007 May; 15(10):6075-86. PubMed ID: 19546912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acousto-optically generated potential energy landscapes: potential mapping using colloids under flow.
    Juniper MP; Besseling R; Aarts DG; Dullens RP
    Opt Express; 2012 Dec; 20(27):28707-16. PubMed ID: 23263108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target trapping and in situ single-cell genetic marker detection with a focused optical beam.
    Cong H; Loo J; Chen J; Wang Y; Kong SK; Ho HP
    Biosens Bioelectron; 2019 May; 133():236-242. PubMed ID: 30953882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.