BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31556180)

  • 41. New insights of red light-induced development.
    Viczián A; Klose C; Ádám É; Nagy F
    Plant Cell Environ; 2017 Nov; 40(11):2457-2468. PubMed ID: 27943362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics and efficiency of photoswitching in biliverdin-binding phytochromes.
    Consiglieri E; Gutt A; Gärtner W; Schubert L; Viappiani C; Abbruzzetti S; Losi A
    Photochem Photobiol Sci; 2019 Oct; 18(10):2484-2496. PubMed ID: 31418445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytochrome: if it looks and smells like a histidine kinase, is it a histidine kinase?
    Elich TD; Chory J
    Cell; 1997 Dec; 91(6):713-6. PubMed ID: 9413979
    [No Abstract]   [Full Text] [Related]  

  • 44. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi.
    Yoshimi A; Kojima K; Takano Y; Tanaka C
    Eukaryot Cell; 2005 Nov; 4(11):1820-8. PubMed ID: 16278449
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Lectin Chaperone Calnexin Is Involved in the Endoplasmic Reticulum Stress Response by Regulating Ca
    Zhang S; Zheng H; Chen Q; Chen Y; Wang S; Lu L; Zhang S
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28550061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light modulation of histidine-kinase activity in bacterial phytochromes monitored by size exclusion chromatography, crosslinking, and limited proteolysis.
    Noack S; Lamparter T
    Methods Enzymol; 2007; 423():203-21. PubMed ID: 17609133
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress.
    Furukawa K; Hoshi Y; Maeda T; Nakajima T; Abe K
    Mol Microbiol; 2005 Jun; 56(5):1246-61. PubMed ID: 15882418
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phytochrome controls conidiation in response to red/far-red light and daylight length and regulates multistress tolerance in Beauveria bassiana.
    Qiu L; Wang JJ; Chu ZJ; Ying SH; Feng MG
    Environ Microbiol; 2014 Jul; 16(7):2316-28. PubMed ID: 24725588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for weak interaction between phytochromes Agp1 and Agp2 from Agrobacterium fabrum.
    Xue P; El Kurdi A; Kohler A; Ma H; Kaeser G; Ali A; Fischer R; Krauß N; Lamparter T
    FEBS Lett; 2019 May; 593(9):926-941. PubMed ID: 30941759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry.
    Yeh KC; Lagarias JC
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13976-81. PubMed ID: 9811911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacteriophytochromes: new tools for understanding phytochrome signal transduction.
    Vierstra RD; Davis SJ
    Semin Cell Dev Biol; 2000 Dec; 11(6):511-21. PubMed ID: 11145881
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fungal photoreceptors: sensory molecules for fungal development and behaviour.
    Corrochano LM
    Photochem Photobiol Sci; 2007 Jul; 6(7):725-36. PubMed ID: 17609765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural mechanism of signal transduction in a phytochrome histidine kinase.
    Wahlgren WY; Claesson E; Tuure I; Trillo-Muyo S; Bódizs S; Ihalainen JA; Takala H; Westenhoff S
    Nat Commun; 2022 Dec; 13(1):7673. PubMed ID: 36509762
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homology at the amino acid level between plant phytochromes and a regulator of asexual sporulation in Emericella (= Aspergillus) nidulans.
    Griffith GW; Jenkins GI; Milner-White EJ; Clutterbuck AJ
    Photochem Photobiol; 1994 Feb; 59(2):252-6. PubMed ID: 8165242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Signaling kinetics of cyanobacterial phytochrome Cph1, a light regulated histidine kinase.
    Psakis G; Mailliet J; Lang C; Teufel L; Essen LO; Hughes J
    Biochemistry; 2011 Jul; 50(28):6178-88. PubMed ID: 21634374
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small heat shock proteins, phylogeny in filamentous fungi and expression analyses in Aspergillus nidulans.
    Wu J; Wang M; Zhou L; Yu D
    Gene; 2016 Jan; 575(2 Pt 3):675-9. PubMed ID: 26403724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic analysis of the TOR pathway in Aspergillus nidulans.
    Fitzgibbon GJ; Morozov IY; Jones MG; Caddick MX
    Eukaryot Cell; 2005 Sep; 4(9):1595-8. PubMed ID: 16151253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How the Pathogenic Fungus Alternaria alternata Copes with Stress via the Response Regulators SSK1 and SHO1.
    Yu PL; Chen LH; Chung KR
    PLoS One; 2016; 11(2):e0149153. PubMed ID: 26863027
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Connection between absorption properties and conformational changes in Deinococcus radiodurans phytochrome.
    Takala H; Lehtivuori H; Hammarén H; Hytönen VP; Ihalainen JA
    Biochemistry; 2014 Nov; 53(45):7076-85. PubMed ID: 25337904
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans.
    Jaimes-Arroyo R; Lara-Rojas F; Bayram Ö; Valerius O; Braus GH; Aguirre J
    Eukaryot Cell; 2015 May; 14(5):495-510. PubMed ID: 25820520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.