BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 31556426)

  • 1. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe.
    Shi L; Yan C; Ma Y; Wang T; Guo Z; Zhu WH
    Chem Commun (Camb); 2019 Oct; 55(82):12308-12311. PubMed ID: 31556426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission.
    Chen JA; Pan H; Wang Z; Gao J; Tan J; Ouyang Z; Guo W; Gu X
    Chem Commun (Camb); 2020 Mar; 56(18):2731-2734. PubMed ID: 32022000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe.
    Gu K; Xu Y; Li H; Guo Z; Zhu S; Zhu S; Shi P; James TD; Tian H; Zhu WH
    J Am Chem Soc; 2016 Apr; 138(16):5334-40. PubMed ID: 27054782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe.
    Pang X; Li Y; Zhou Z; Lu Q; Xie R; Wu C; Zhang Y; Li H
    Talanta; 2020 Sep; 217():121098. PubMed ID: 32498839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo.
    Li Y; Liu F; Zhu D; Zhu T; Zhang Y; Li Y; Luo J; Kong L
    Talanta; 2022 Jan; 237():122952. PubMed ID: 34736678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative.
    Jiang G; Zeng G; Zhu W; Li Y; Dong X; Zhang G; Fan X; Wang J; Wu Y; Tang BZ
    Chem Commun (Camb); 2017 Apr; 53(32):4505-4508. PubMed ID: 28383580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging.
    Fan F; Zhang L; Zhou X; Mu F; Shi G
    J Mater Chem B; 2021 Jan; 9(1):170-175. PubMed ID: 33230516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase.
    Zhang X; Chen X; Zhang Y; Liu K; Shen H; Zheng E; Huang X; Hou S; Ma X
    Anal Bioanal Chem; 2019 Dec; 411(30):7957-7966. PubMed ID: 31732786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo tumor imaging by a γ-glutamyl transpeptidase-activatable near-infrared fluorescent probe.
    Li L; Shi W; Wu X; Li X; Ma H
    Anal Bioanal Chem; 2018 Oct; 410(26):6771-6777. PubMed ID: 29909457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence-Guided Cancer Diagnosis and Surgery by a Zero Cross-Talk Ratiometric Near-Infrared γ-Glutamyltranspeptidase Fluorescent Probe.
    Ou-Yang J; Li Y; Jiang WL; He SY; Liu HW; Li CY
    Anal Chem; 2019 Jan; 91(1):1056-1063. PubMed ID: 30539637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe.
    Kim EJ; Kumar R; Sharma A; Yoon B; Kim HM; Lee H; Hong KS; Kim JS
    Biomaterials; 2017 Apr; 122():83-90. PubMed ID: 28110172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific Near-Infrared Probe for Ultrafast Imaging of Lysosomal β-Galactosidase in Ovarian Cancer Cells.
    Li X; Pan Y; Chen H; Duan Y; Zhou S; Wu W; Wang S; Liu B
    Anal Chem; 2020 Apr; 92(8):5772-5779. PubMed ID: 32212603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared ratiometric self-assembled theranostic nanoprobe: imaging and tracking cancer chemotherapy.
    Tian X; Li Z; Ding N; Zhang J
    Chem Commun (Camb); 2020 Mar; 56(25):3629-3632. PubMed ID: 32104834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric fluorescent probes with a self-immolative spacer for real-time detection of β-galactosidase and imaging in living cells.
    Chen X; Ma X; Zhang Y; Gao G; Liu J; Zhang X; Wang M; Hou S
    Anal Chim Acta; 2018 Nov; 1033():193-198. PubMed ID: 30172326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hepatocyte-targeting near-infrared ratiometric fluorescent probe for monitoring peroxynitrite during drug-induced hepatotoxicity and its remediation.
    Jiang WL; Li Y; Wang WX; Zhao YT; Fei J; Li CY
    Chem Commun (Camb); 2019 Nov; 55(95):14307-14310. PubMed ID: 31713549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel fluorescent probe for rapid and ratiometric detection of β-galactosidase and live cell imaging.
    Chen X; Zhang X; Ma X; Zhang Y; Gao G; Liu J; Hou S
    Talanta; 2019 Jan; 192():308-313. PubMed ID: 30348394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Infrared Fluorescent Probe with Remarkable Large Stokes Shift and Favorable Water Solubility for Real-Time Tracking Leucine Aminopeptidase in Living Cells and In Vivo.
    Zhang W; Liu F; Zhang C; Luo JG; Luo J; Yu W; Kong L
    Anal Chem; 2017 Nov; 89(22):12319-12326. PubMed ID: 29048879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-red imaging of β-galactosidase through a phospha-fluorescein.
    Ding Z; Wang C; Fan M; Zhang M; Zhou Y; Cui X; Zhang D; Wang T
    Chem Commun (Camb); 2020 Nov; 56(88):13579-13582. PubMed ID: 33052367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of near-infrared ratiometric fluorescent probes for real-time tracking of β-galactosidase in vivo.
    Chen S; Liu M; Zi Y; He J; Wang L; Wu Y; Hou S; Wu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121879. PubMed ID: 36122464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel fluorescent probe for the ratiometric detection of β-galactosidase and its application in fruit.
    Li Y; Duan N; Wu X; Yang S; Tian H; Sun B
    Food Chem; 2020 Oct; 328():127112. PubMed ID: 32470778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.