BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31556426)

  • 21. Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo.
    Ding N; Li Z; Tian X; Zhang J; Guo K; Wang P
    Chem Commun (Camb); 2019 Oct; 55(87):13172-13175. PubMed ID: 31620737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time monitoring of γ-Glutamyltranspeptidase in living cells and in vivo by near-infrared fluorescent probe with large Stokes shift.
    Liu F; Wang Z; Zhu T; Wang W; Nie B; Li J; Zhang Y; Luo J; Kong L
    Talanta; 2019 Jan; 191():126-132. PubMed ID: 30262041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activatable Formation of Emissive Excimers for Highly Selective Detection of β-Galactosidase.
    Li Y; Ning L; Yuan F; Zhang T; Zhang J; Xu Z; Yang XF
    Anal Chem; 2020 Apr; 92(8):5733-5740. PubMed ID: 32193934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Chemiluminescent Probes with a Very Long Near-Infrared Emission Wavelength for in Vivo Imaging.
    Huang J; Jiang Y; Li J; Huang J; Pu K
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3999-4003. PubMed ID: 33119955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid fluorescence imaging of human hepatocellular carcinoma using the β-galactosidase-activatable fluorescence probe SPiDER-βGal.
    Ogawa S; Kubo H; Murayama Y; Kubota T; Yubakami M; Matsumoto T; Yamamoto Y; Morimura R; Ikoma H; Okamoto K; Kamiya M; Urano Y; Otsuji E
    Sci Rep; 2021 Sep; 11(1):17946. PubMed ID: 34504174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A near-infrared fluorescent probe with a substantial Stokes shift designed for the detection and imaging of β-galactosidase within living cells and animals.
    Lo YP; Nivetha N; Velmathi S; Wu SP
    Methods; 2024 Feb; 222():10-18. PubMed ID: 38154527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models.
    Luo W; Diao Q; Lv L; Li T; Ma P; Song D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124411. PubMed ID: 38728851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Nile blue based infrared fluorescent probe: imaging tumors that over-express cyclooxygenase-2.
    Wang B; Fan J; Wang X; Zhu H; Wang J; Mu H; Peng X
    Chem Commun (Camb); 2015 Jan; 51(4):792-5. PubMed ID: 25424129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ratiometric Nanoparticle Array-Based Near-Infrared Fluorescent Probes for Quantitative Protein Sensing.
    Wang X; Zhao X; Zheng K; Guo X; Yan Y; Xu Y
    Langmuir; 2019 Apr; 35(16):5599-5607. PubMed ID: 30942591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells.
    Wu C; Ni Z; Li P; Li Y; Pang X; Xie R; Zhou Z; Li H; Zhang Y
    Talanta; 2020 Nov; 219():121307. PubMed ID: 32887048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells.
    Zhang J; Li C; Dutta C; Fang M; Zhang S; Tiwari A; Werner T; Luo FT; Liu H
    Anal Chim Acta; 2017 May; 968():97-104. PubMed ID: 28395779
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Chen JA; Guo W; Wang Z; Sun N; Pan H; Tan J; Ouyang Z; Fu W; Wang Y; Hu W; Gu X
    Anal Chem; 2020 Sep; 92(18):12613-12621. PubMed ID: 32786453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vivo Fluoride Ion Detection and Imaging in Mice Using a Designed Near-Infrared Ratiometric Fluorescent Probe Based on IR-780.
    Tian X; Tong X; Li Z; Li D; Kong Q; Yang X
    J Agric Food Chem; 2018 Oct; 66(43):11486-11491. PubMed ID: 30350985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of Selenocysteine with a Ratiometric near-Infrared Fluorescent Probe in Cells and in Mice Thyroid Diseases Model.
    Luo X; Wang R; Lv C; Chen G; You J; Yu F
    Anal Chem; 2020 Jan; 92(1):1589-1597. PubMed ID: 31815453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activatable Near-Infrared Fluorescent Probe for Dipeptidyl Peptidase IV and Its Bioimaging Applications in Living Cells and Animals.
    Liu T; Ning J; Wang B; Dong B; Li S; Tian X; Yu Z; Peng Y; Wang C; Zhao X; Huo X; Sun C; Cui J; Feng L; Ma X
    Anal Chem; 2018 Mar; 90(6):3965-3973. PubMed ID: 29493228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a highly specific NQO1-activated near-infrared fluorescent probe and its application for in vivo tumor imaging.
    Punganuru SR; Madala HR; Arutla V; Zhang R; Srivenugopal KS
    Sci Rep; 2019 Jun; 9(1):8577. PubMed ID: 31189950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A tumor-targeted near-infrared fluorescent probe for HNO and its application to the real-time monitoring of HNO release
    Chai Z; Liu D; Li X; Zhao Y; Shi W; Li X; Ma H
    Chem Commun (Camb); 2021 May; 57(41):5063-5066. PubMed ID: 33884388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity.
    Zhang Q; Li S; Fu C; Xiao Y; Zhang P; Ding C
    J Mater Chem B; 2019 Jan; 7(3):443-450. PubMed ID: 32254731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Ultrasensitivity Fluorescent Probe Based on the ICT-FRET Dual Mechanisms for Imaging β-Galactosidase in Vitro and ex Vivo.
    Kong X; Li M; Dong B; Yin Y; Song W; Lin W
    Anal Chem; 2019 Dec; 91(24):15591-15598. PubMed ID: 31726828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A lysosome-specific near-infrared fluorescent probe for in vitro cancer cell detection and non-invasive in vivo imaging.
    Mengji R; Acharya C; Vangala V; Jana A
    Chem Commun (Camb); 2019 Dec; 55(94):14182-14185. PubMed ID: 31701969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.