These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31556615)

  • 41. Exciton linewidth broadening induced by exciton-phonon interactions in CsPbBr
    Yu B; Zhang C; Chen L; Huang X; Qin Z; Wang X; Xiao M
    J Chem Phys; 2021 Jun; 154(21):214502. PubMed ID: 34240983
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rabi oscillations of excitons in single quantum dots.
    Stievater TH; Li X; Steel DG; Gammon D; Katzer DS; Park D; Piermarocchi C; Sham LJ
    Phys Rev Lett; 2001 Sep; 87(13):133603. PubMed ID: 11580588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal Tuning and Inversion of Excitonic Zeeman Splittings in Colloidal Doped CdSe Quantum Dots.
    Schimpf AM; Gamelin DR
    J Phys Chem Lett; 2012 May; 3(10):1264-8. PubMed ID: 26286769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Persistent Inter-Excitonic Quantum Coherence in CdSe Quantum Dots.
    Caram JR; Zheng H; Dahlberg PD; Rolczynski BS; Griffin GB; Fidler AF; Dolzhnikov DS; Talapin DV; Engel GS
    J Phys Chem Lett; 2014 Jan; 5(1):196-204. PubMed ID: 24719679
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultra-narrow room-temperature emission from single CsPbBr
    RainĂ² G; Yazdani N; Boehme SC; Kober-Czerny M; Zhu C; Krieg F; Rossell MD; Erni R; Wood V; Infante I; Kovalenko MV
    Nat Commun; 2022 May; 13(1):2587. PubMed ID: 35546149
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].
    Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dephasing in quantum dots: quadratic coupling to acoustic phonons.
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2004 Dec; 93(23):237401. PubMed ID: 15601200
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How quickly does a hole relax into an engineered defect state in CdSe quantum dots.
    Avidan A; Pinkas I; Oron D
    ACS Nano; 2012 Apr; 6(4):3063-9. PubMed ID: 22439798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.
    Kennehan ER; Doucette GS; Marshall AR; Grieco C; Munson KT; Beard MC; Asbury JB
    ACS Nano; 2018 Jun; 12(6):6263-6272. PubMed ID: 29792675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unraveling the structure and dynamics of excitons in semiconductor quantum dots.
    Kambhampati P
    Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites.
    Straus DB; Hurtado Parra S; Iotov N; Gebhardt J; Rappe AM; Subotnik JE; Kikkawa JM; Kagan CR
    J Am Chem Soc; 2016 Oct; 138(42):13798-13801. PubMed ID: 27706940
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonuniform Excitonic Charge Distribution Enhances Exciton-Phonon Coupling in ZnSe/CdSe Alloyed Quantum Dots.
    Gong K; Kelley DF; Kelley AM
    J Phys Chem Lett; 2017 Feb; 8(3):626-630. PubMed ID: 28107015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique.
    Huxter VM; Scholes GD
    J Chem Phys; 2010 Mar; 132(10):104506. PubMed ID: 20232970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fundamental Properties in Colloidal Quantum Dots.
    Barak Y; Meir I; Shapiro A; Jang Y; Lifshitz E
    Adv Mater; 2018 Oct; 30(41):e1801442. PubMed ID: 29923230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revealing and Characterizing Dark Excitons through Coherent Multidimensional Spectroscopy.
    Tollerud JO; Cundiff ST; Davis JA
    Phys Rev Lett; 2016 Aug; 117(9):097401. PubMed ID: 27610881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermodynamic Equilibrium between Excitons and Excitonic Molecules Dictates Optical Gain in Colloidal CdSe Quantum Wells.
    Geiregat P; Tomar R; Chen K; Singh S; Hodgkiss JM; Hens Z
    J Phys Chem Lett; 2019 Jul; 10(13):3637-3644. PubMed ID: 31187998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.
    Narayanaswamy A; Feiner LF; Meijerink A; van der Zaag PJ
    ACS Nano; 2009 Sep; 3(9):2539-46. PubMed ID: 19681583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.